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Section A)  
 
Early Gearbox Fault Detection via Auto-Regressive Models in the Time 
Domain constructed from Vibrational Data   
 

Abstract 
 

Vibration-based testing and diagnostic techniques have been widely applied to detect 

and prevent the degradation and deterioration of continuously functioning gearboxes. 

The typical set up of this technique involves the collection of vibration signal data over 

discrete time periods obtained from an array of sensors mounted onto the shell of the 

gearbox. During this time frame, the gearbox is subjected to load conditions exceeding 

the load-bearing capacities of the machine. 

 

The vibration data collected is used to create an early fault detection scheme for the 

machine. In order to process this data, one must first identify the correct meshing 

frequency pertaining to the rotating gears. After that, the technique of time-

synchronous-averaging is used to reduce noise and produce a cleaner signal. 

 

Once the signal is processed, an auto-regressive model is constructed from the data 

collected from the healthy state. Subtracting the AR model prediction values from the 



healthy state observations, we obtain residual values of the vibration signal. A standard 

3-sigma control chart based on the residual data in the healthy state is set up and used 

to monitor the behavior of the machine leading to early detection of failure.   

 

The result of this research is beneficial in many industries including companies which 

operate machines with a critical function that must comply to a guaranteed runtime 

prior to failure. Such industries include, aerospace, manufacturing and military. 

 
1) Introduction 
 
Vibration signal collection is a condition monitoring method that has attracted 

increasing industry interest in recent years. Due to the widespread application of gears 

in industrial practice (e.g. automotive, helicopters, aerospace etc.), if interpreted 

correctly gearbox vibration data can be applied as a condition indicator of the moving 

part of interest, in our case a specific gear in the transmission set up.  

 

In this research, the load applied to the machinery remains constant, thereby 

simplifying the procedure. It is worthy to note that in real production environments the 

applied loads often vary in time. Therefore the application of this research will only 

assist in automated machines that experience approximately constant load conditions 

for prolonged periods of time.  

 

Conventional vibrational monitoring techniques, such as this, are based on the 

assumption that changes in the vibrational signals are due to the deterioration of the 

condition of the gearbox , outlined in Zhan and Makis [2], therefore increasingly erratic 

vibrational amplitudes, as well as increased mean value, imply the deterioration of the 

machine. 

 

Since the vibrational data is collected from an accelerometer sensor mounted on the 

shell of the gearbox, unwanted vibration signals associated with all sorts of transmission 

components (such as shafts, bearings etc.) will be recorded. This phenomenon masks 

the vibration signal of the gear of interest, and therefore additional signal processing 

methods such as time synchronous averaging should be applied to isolate the signal 

corresponding to the specific gear.  

 



Using the raw data containing vibrational signals, we use time synchronous averaging to 

isolate the target gear. Subsequently, the root mean squared (RMS) value corresponding 

to each period of the target gear is calculated to represent the magnitude of vibrational 

variation of the rotating gear. Using the RMS values, we create an auto regressive (AR) 

model to predict the behavior of the machine over the course of its run time. Observing 

the difference between the actual RMS data and AR predicted values, we can use a 

control chart to monitor the condition of the gear of interest. 

 

 

 

[Figure 1. Flow chart overview of procedure.] 

 
2) Gearbox and Sensor Data: 
 

In this project, the aim was to create an early fault detection scheme for a running 

gearbox under constant load conditions. To accomplish this, we used data from 

Pennsylvania State University Applied Research Laboratory’s Mechanical Diagnostic 

Test Bet (MDTB). In the experiment conducted by MDTB denoted a s Test Run 10, a 



single reduction helical gearbox was run until failure. The machine was run at 100% and 

then subsequently 200% maximum load. 

 

The aim is to analyze the vibrational data collected from a single sensor, A02, and 

analyze the vibration signatures captured by the machine during the runtime, 

particularly the time frame where 200% maximum load was applied. During that time 

frame the gearbox was running continuously for 93.2 hours until failure. 

 

[Figure 2. Gearbox configuration and run conditions.] 

 
3) Data Collection  
 

During the data retrieval process, raw vibrational signals are directly imported from file 

A02 into MATLAB. The vibrational data was collected in 10 second windows at set times 

and triggered by accelerometer root mean squared thresholds. We use the threshold as 

an indicator for the beginning of each periodic cycle in order to ensure that the data is 

synchronous from the beginning of each 10 second window.  

 



The technique of time synchronous averaging can be applied to clean the signal in 

accordance to the frequency of the target gear, but first we must identify the time 

intervals where synchronous cyclic repetition occurs. Before the collected data can be 

interpreted and analyzed, the correct K value, (number of data points pertaining to one 

cycle of the target gear) must be obtained in order for the data to be processed correctly. 

The [K value] is a property of the mechanical configuration of the gearbox, and is used 

to isolate the target gear for failure analysis. To identify the desired [K value] of the 

target gear we use the following equation, outlined in Yang and Makis [1].  

 

𝐾 =   
𝑓!

𝑓!
𝑁!

 

(1) 

where 𝑓! is the sampling frequency of the sensor, 𝑓! is the meshing frequency of the 

gears, and 𝑁! is the number of teeth of the target gear. 

 

After obtaining the K value of the gearbox configuration, the collected raw data must be 

sectioned into partitions, each the size of the amount of data, prescribed by the meshing 

frequency. We begin by assuming that the natural frequency of the target gear should be 

embedded in the raw signal. The technique of time synchronous averaging is then 

applied to remove the white noise caused by gear shaft imbalance signals, and load 

variation signatures etc. [1]. 

 

 

[Figure 3. CAD depiction of 30 teeth helical pinion gear, marked in grey, to 46 teeth 

helical target gear marked in green.] 



 

 

4) Determining TSA intervals using peak-to-peak algorithm 
 

Due to the fact that the gear configuration of the gearbox in in contact with one another, 

the varying frequencies excluding the white noise contribution would be considered to 

be an effect of the varying harmonics within the gearbox, the dominant frequency being 

the meshing frequency of the gear (875 Hz). Therefore, we can expect to observe 

periodic behavior within each 10 second window. 

 

The intervals of periodic behavior mark the beginning of repetition within the signal, 

where we can subsequently use time synchronous averaging across each repetition to 

produce a cleaner signal with reduced noise. However, when performing the peak-to-

peak algorithm independently on each 10 second window data file, the intervals where 

peak to peak detection occur are very inconsistent. This is due to the fact that white 

noise has a Gaussian distribution of varying amplitudes within the signal. 

 

To produce a cleaner peak-to-peak signal from the 10 second window, with consistent 

intervals, we take the averaged signature values over 60 files, and then run a peak to 

peak algorithm on it. The results produce a more refined and precise interval locations, 

with smaller variability.  

 

In order to find the areas where cyclic repetition occurs, we must first obtain the peak-to 

peak intervals within each data file collected. We use a peak-to-peak detection with 

MATLAB. The peak-to-peak function “peaks(data)” locates the points where the local 

maximum values appear. Using these location points we initiate the time synchronous 

averaging algorithm.  

 

5) Time Synchronous Averaging (TSA) 
 

Time synchronous averaging (TSA) involves averaging the periodic data over the range 

corresponding to the number of data points representing one cycle of the target gear 

[K]. Each interval pertaining to one cycle corresponds to K = 1051 data points, initiated 

at the time locations provided by the peak-to-peak algorithm. This ensures that each 

packet of time data is synchronous with the next period. Subsequently for each 10 



second window, we average periodic intervals corresponding to K data points, at 

approximately 190 synchronous starting points, 𝑀!.  

 

𝑀! =    𝑁/𝐾  

(2) 

 

Where N is equal to the number of data points corresponding to each 10 second window 

(200,000). K is equal to the number of data points pertaining to one cycle of the target 

gear (1051).  

 

We begin time synchronous averaging (TSA) by averaging each periodic section of the 

data file at the location points provided by the peak to peak algorithm. 

 

TSA Formulation: 

  

𝑽!"#(𝑘) =   
1
𝑀!

𝑽(𝑘 + 𝑖𝐾)
!!!!

!!!

 

(3) 

where, {𝑽!"#(𝑘)} refers to the TSA average of the sequence of 𝑀! points spanning one 

period of the averaged sections, {𝑽 𝑘 } is used to denote the discrete time vibration data 

within each data file representing a 10 second window, and k denotes the location of 

each individual element  (k = 1 to k = 1051) within one period of the target gear 

frequency. 

 

Once the TSA model is produced, each 10 second window is subsequently summarized 

into a collection of K = 1051 data points corresponding to the number of data points 

relative to each cycle of the target gear. Each 10 second window consisting of 200,000 

data points is compressed into one packet consisting of K = 1051 data points.  

 

Thereafter, each compressed data packed produced by TSA is combined together 

chronologically for the purpose of comparison (note that the actual data collected by 

each 10 second window pertains to discrete time intervals not necessarily continuous in 

nature). Since there are 136 data files pertaining to the gearbox running at 200% load, 

there are 136 𝑽!"# packets. 



[Figure 4. Raw vibration data collected from sensor A02] 

 

[Figure 5. Vibration data filtered using Time Synchronous Averaging] 

 

 

 

 

 



6) Determining Root Mean Square 
 

For purposes of simplification, we obtain the Root Mean Square (RMS) value of each 

TSA packet. RMS is the measure of varying vibrational quantity indicative of the energy 

of the vibration in each target gear cycle.  

 

RMS Formula: 

 

𝑅𝑀𝑆 =    !
!

[𝑽!"#(𝑘)]!!  

(4) 
 

We see that the when RMS values increases, the process becomes increasingly out of 

control. 

 

 
[Figure 6. Root Mean Square Values with subtracted Mean from first 40 files in the 

healthy state] 

 

7) Order selection and construction of AR Model 



 

The next step is to produce an Auto-Regressive model to simulate the future 

performance of the gearbox in the healthy state. We use the AR model to model the RMS 

values corresponding to the TSA packets to predict the future performance of the 

gearbox. 

 

Arbitrarily, we select the first 40 RMS values to be representative of the gearbox in the 

healthy state. Also, we create 20 AR models based on lag orders 1 through 20 and 

evaluate the Akaike Information Criterion (AIC) of each AR model based on the 

respective lags to determine which model is the best. 

 

We select the lag order which produces the lowest AIC value to model the behavior of 

the RMS values in the healthy state. In this experiment, the lowest AIC value was 

“6.6213” corresponding to the lag order 12. Therefore, an AR model with the lag order 12 

was used to produce a healthy state model of the gearbox. 

 

AIC formula:  

 

AIC = 2k – 2ln(L) 

(5) 

 

L is the maximum likelihood function for each AR model, and k is the number of 

parameters of the model. In order, to obtain the AIC values of each model in MATLAB, 

we first use the “ar(data, lag)” function in MATLAB to generate the model parameters.  

The “ar” function implements the Yule-Walker equations [7] to determine the 

coefficients for the AR model. After, the AR model is fed into the function “aic(model)”, 

part of the MATLAB System Identification Toolbox to determine the Akaike Index 

Criterion of the model. 

 



 
 

[Figure 7. AIC Values for AR models constructed from lag orders 1 to 20, with optimal 

lag order of 12 marked in light green.] 

 

Once the optimal lag order is known, we use the AR parameters generated from the 

optimal lag order to forecast the behavior of the gearbox running in the healthy state.  

 



 

 

[Figure 8. AR model of lag order 12 in green, RMS mean subtracted model in blue, area 

to the left of the red dashed line indicates region pertaining to the healthy state of the 

machine.] 

 

8) Obtain Residuals, and set up 3 Sigma Bounds 

 

In order to produce a control chart from the collected data, the AR model prediction of 

the data generated from MATLAB is subsequently subtracted from the RMS values of 

the observed data to obtain the error of the prediction, defined as the residual value. We 

stipulate that the first 40 residual values pertain to the gearbox running in healthy state, 

which we denote as the training data. And thus, the files from 41 to 136 corresponding to 

the gearbox testing data, is utilized to monitor the condition of the gearbox. 

 

Calculating the standard deviation of the residual data in the training phase we obtain 

the 3-sigma bounds which are used to monitor the entire run time. Evaluating the 

values of the RMS residual data, we can determine whether the process is in control or 

not.  

 



 

 

[Figure 9. Control Chart Residuals.] 

 

We can see from the residual chart that the process has points falling outside of the 

control bounds beginning with the file 'A0200310.010' '09-Jul-1998 15:06:32' [marked 

in orange]. This indicates an anomaly in the state of the machine, and thus preventive 

maintenance planning should begin to reduce the chance of failure. 

 

From file 'A0200356.010' '09-Jul-1998 15:06:48' and onwards (marked in red), we can 

see that the vibrational state of the machine is becoming extremely unstable, as 

successive residual points fall outside of the 3 sigma limit. Therefore, preventive 

maintenance should be preformed immediately. 

 

9) Conclusion 
 

The transmission fault detection scheme presented in this report was successful in 

detecting the time where preventive maintenance should be planned, and also the time 



where severe deterioration begins. A conventional TSA algorithm was used to isolate the 

signals pertaining to the target gear. RMS values were calculated to represent the 

varying quantity of each TSA packet representing a 10 second window. An AR model 

was produced from the portion of the gearbox running in the healthy state. From the AR 

model, residual values were obtained and used to monitor the condition of the machine 

via control chart methods.  

 

The application of this research can have an effective impact not only on preventive 

maintenance but also on the quality assurance of machines. Industries which may find 

suitable use for control chart methods to assist in fault detection and quality assurance 

include military, power generation, automotive, and manufacturing. Of these industries, 

there often exist machines which mandate a guaranteed run time before failure, and 

thus a scheme to provide scheduled preventive maintenance would be beneficial in 

order to reduce the chance of failure during the guaranteed run time.  

 

Future considerations of this research include the utilization of more advanced 

statistical models to model the vibrational phenomena. Such models include auto-

regressive moving average (ARMA) or auto-regressive exogenous (ARX) models. Using 

these models, it is possible to create a fault detection scheme for machines operating 

under varied loads [1]. 

 

Furthermore, instead of providing an AR model based on the RMS values, it is possible 

to construct an AR model based on the actual vibration signal, such procedures would 

require much greater computing power, and also more efficient algorithms. Also, more 

advanced signal processing methods, such as harmonic filtering and Fourier analysis, 

could be considered to produce even more refined and cleaner signals corresponding to 

the target gear. The aforementioned future improvements could possibly enhance the 

accuracy and utility of the fault detection scheme. 

 
Section B)  
 
Summary of Miscellaneous Research Contributions for 2012 Summer 
Semester 
 

B I)  
Monitoring the Behavior of Individual Gear Teeth via Residual Data 



constructed from Varying-Load Using Vector Auto-Regressive Model of 
Vibration Data 
 
1) Experimental Overview 
 

In the research paper, “Detection of Gearbox Deterioration under Varying-Load Using 

Vector Auto-Regressive Model of Vibration Data” [4], the goal was to create a fault 

detection scheme for a varying load gearbox, by creating a Vector Autoregressive model 

(VAR) model constructed from vibration data. The studied vibration data was obtained 

from the Mechanical Diagnostic Test Bed (MDTB) built by Pennsylvania State 

University Applied Research Laboratory Condition-Based Maintenance Department. 

The MDTB gearbox contained a 70-tooth driven helical gear and a 21-tooth pinion gear, 

driven at a set input speed using a 30 Hp, 1750 rpm drive motor, with the torque applied 

by a 75 HP, 1750 rpm absorption motor  [5]. 

 

2) Monitoring the Behavior of Individual Gear Teeth 
 

The objective of this procedure was to capture the irregularities occurring during the run 

time of the gear corresponding to each gear teeth. In the aforementioned experiment 

conducted by MDTB, seven gear teeth were found to have deteriorated severely. 

Therefore, if each gear teeth was isolated and monitored, we would expect data 

pertaining to these seven gear teeth to show signs of deterioration. 

 

During the entire run time, 93 vibrational data files spanning to 10 second time intervals 

were captured. Each data file was time-synchronous averaged into K = 2285 data points, 

corresponding to the number of data points representing one revolution of the target 

gear [1]. 

 

𝐾 =   
𝑓!

𝑓!
𝑁!

 

(1) 

 

We theorized that if we were to monitor the residual data obtained by subtracting the 

VAR model from the actual vibration, we could monitor condition of each gear teeth. To 

do this, we applied the use of 3 indicators, root mean square, kurtosis, and skew.  



 

For all 93 “10 second windows”, we isolated it into data segments pertaining to each 

gear teeth, 

 

𝑘! =    𝐾/𝑁!  = 2285/70 = 32 

(6) 

Where kt represents the number of data points representing each gear tooth, K is the 

number of data points representing one revolution of the gear, Nt represents the number 

of teeth. Therefore, each 32 residual data points represents one gear teeth, allowing us 

to compute the RMS, Kurtosis, and Skew from the residual data of each gear teeth. 

 

2 a) Root Mean Square Method: 
 

The RMS captures the varying quantity of vibration of each gear tooth constructed from 

the residual data. We stipulate that the increase in varying quantity, conveyed by the 

increase in RMS value, indicates failure of the gear teeth.  

 

 

 

 

[Figure 10. Sample RMS Values for Gear Teeth #16 ] 

 



 

We found that while obtaining the RMS for each gear tooth, files pertaining to all gear 

teeth on the target gear experienced increasing RMS values, as oppose to specifically the 

seven gear teeth where severe deterioration were found after physical inspection. This 

indicates that the deterioration of one gear teeth influences vibrational anomalies within 

the entire mechanical system, thus we were unable to isolate and monitor each gear 

teeth in particular using the RMS method. 

 

2 b) Examining Kurtosis & Skew: 
 

We assume that the residual data should be normally distributed for each gear tooth 

operating in the healthy state. The kurtosis of the distribution captures the peaked-ness 

of the distribution of residual data respective to the normal distribution. If the kurtosis 

value increase in positive value, the distribution becomes more peaked. On the contrary, 

if the kurtosis value becomes increasingly negative, the distribution becomes more “bell 

shaped". [6]  

 

The skewness measures the symmetry of the residual data distribution. An increasing 

skew value away from zero indicates increasing dissymmetry, conveying that data is 

distributed more to either the left or right. Whereas a skew value of zero  indicates 

perfect symmetry.  

 

 



 
[Figure 11, Average Kurtosis values for each gear teeth 1 - 70 ] 

 

We use these indicators, skewness and kurtosis, to measure the normality of data over 

the run time. When the data becomes less adherent to the normal distribution we take 

this as an indicator of deterioration. 

 

After computing the kurtosis of the residual data pertaining to each gear tooth, we took 

the average kurtosis of each gear tooth throughout time. We found that the average 

kurtosis values remained below zero for all data files pertaining to each gear tooth, 

indicating an imperfect normality distribution for all gear teeth pertaining to the target. 

 

Moreover, the average skew of the residual data pertaining to each gear teeth on the 

target gear all oscillated around the zero mark, the skew value was not indicative of 

failure on any data file pertaining to specific gear teeth. 

 

 

 



 
[Figure 12. Average skew values of gear teeth 1-70] 

 

Overall, the objective to identify and monitor the specific gear teeth via RMS, kurtosis, 

and skewness gave no conclusive results. 

 

B II) Fourier Analysis to Identify Meshing Frequencies & Harmonics 
 

One signal processing approach was to filter out raw vibration data using Fourier 

transform to transform the data from the time domain to the frequency domain. This 

allows us to identify the dominant and harmonic frequencies contained in the signal. To 

accomplish we implemented a Fast Fourier Transform, which is an algorithm to 

approximate the Discrete Fourier Transform [3]. 

 

The dominant frequency pertaining to the main meshing frequency was found to be 

613 Hz, 3.065% of the meshing frequency ( fs ) of 20,000 Hz. The harmonic frequencies 

resonating from that frequency was found to be, 1226 Hz,1839 Hz, 2452 Hz, all integer 

multiples of the meshing frequency. 



 

 

 

 

[Figure 13. Fast Fourier Transform of raw vibration signals in the frequency domain. X 

axis indicates the percentage of the meshing frequency of 20,000 Hz.] 

 

Subsequently, one could implement a high/low pass filter to filter out the signal. This 

step was not carried through, however, we were successful in identifying the various 

frequencies contained within the signal. The most dominant frequency contained within 

the signal was the theoretical meshing frequency of 613 Hz.  
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Appendix 
 

Estimating AR parameters using Yule-Walker equations via MATLAB 
 

The Auto-Regressive (AR) model prediction model which takes into consideration 

previous observations corresponding to the lag order. 

 

𝑌! = 𝑐 +    𝜑!𝑌!!!

!

!!!

+   𝜀! 

(i) 

Where, 𝑌! is the observation at time t, 𝑌!!! is the observation at lag t-i , 𝜑! is the AR 

parameter for the lag order i, p is the lag order of the AR model, c is a constant 

representing the mean value of the observation, (in our case 0) since we subtracted the 

healthy state mean out of the RMS values, and 𝜀! is the noise at time t. 

 

Therefore,  

 

𝑌! = 𝑌! −   𝜀! 
 

 

where 𝑌! is the AR prediction at time t. 

 

The parameters used to create the AR model based on the lag order 12 were estimated 

using the Yule Walker algorithm [7] in MATLAB using the function “aryule(data)”, part 

of the system identification toolbox. 

 

Estimating the AR parameters based on the RMS mean subtracted values we found the 

AR parameters at lags 1 through 12, respectively to be 

 

0.1212   -0.0923   -0.0162    0.0861   -0.2123    0.2562    0.1524    0.1723   -0.0388    

0.0460   -0.0182   -0.0085 

 


