
 

 

 
 
 
 
 
 

COMPARATIVE STUDY BETWEEN STATISTICAL FRAUD DETECTION METHODS ON ECOMMERCE 
NETWORKS 

 
 
 
 
 
 

by 
 
 
 
 
 
 
 

Larkin Liu 
 

 

 

 

 

 
 
 
 
 

A thesis submitted in conformity with the requirements	
for the degree of Master of Applied Science  

Graduate Department of Mechanical and Industrial 
Engineering University of Toronto 

 

 

 
© Copyright 2017 by Larkin Liu 



  

ii 

 

 

 

 

Abstract 

Comparative Study between Statistical Fraud Detection Methods on eCommerce Networks 

 

Larkin Liu 

Master of Applied Science 

Graduate Department of Mechanical and Industrial Engineering 

University of Toronto 

2017 

 

In the eCommerce industry, the problem of consumer fraud is becoming an increasingly 

troublesome problem posing a multitude of challenges. Large eCommerce firms, such as Alibaba, 

eBay, Amazon (to name a few) serve the needs of hundreds of millions customers. On a daily 

basis, a large number of transactions are made and recorded, as more consumers are becoming 

susceptible to fraudulent behaviour provided the scale of operations. This research aims to develop 

a robust real-time fraud detection algorithm based on the construction of a behavioural reference 

model. Time series features pertaining to a data set of customers on a large eCommerce service 

are collected and assigned to two classes (non-fraudulent or fraudulent) and modelled using a 

general stochastic model. The classification performance of this model is compared with more 

conventional classification techniques, such as logistic regression, tree-based methods, and Naïve 

Bayesian Classifier.
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Chapter 1. Introduction 
 

In the following work, we analyse the problem of fraud prevention from an internet based 

eCommerce platform. We propose to approach the problem considering both a transaction level 

and customer level and develop a robust behavioural model that characterizes the legitimacy of 

transactions. For example, each customer may have a preference of purchasing certain types of 

merchandise, and behavioural models can generalize the global behaviour of all customers on the 

platform. Basic methods of fraud detection include comparison of observed data with expected 

values, however, this method is dependent on how the expected data is generated, or how the data 

is modelled (Bolton, 2002). 

 

In the context of fraud, large firms increasingly recognize that consumer fraud is an organized 

crime, and fraudsters change their patterns to avoid detection (Cavusoglu, 2004). Such fraudsters 

will attempt to mask their devious behaviour by masquerading as genuine customers, finding 

exploits, and executing fraudulent transactions in batch on multiple accounts. This presents a 

challenge for investigators to detect fraud with certainty. Such fraudsters are also extremely high 

risk due to the amount of cost incurred by parties affected, the consumer, and the merchant. 

Fraudulent customers can nest in a large complex system very well where classification of 

fraudulent customers can be hard to perform due to the complex relationships and scale of an 

eCommerce network. 

 

Classification of customer behaviour is of value both from a marketing standpoint and a fraud 

detection prevention standpoint. Risk management domain experts must be able to understand a 

multidisciplinary collection of factors and processes that impact the eventual loss numbers, rather 

than look for malicious actions everywhere (Samet, 2013). High risk fraudsters should take 

precedence over low risk fraudsters and thus the process thus should be cost optimized.  
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(Moskovitch, 2009) presents a two tier classification system for fraud on eBanking networks. One 

based on login verification, and one based on continuous verification. Login based verification is 

one time, and examines the credentials of the customer before they are allowed to execute actions 

on the financial platform. Continuous verification focuses on the continual real time evaluation of 

a customer, constantly monitoring and surveying customer actions over time. In our research, we 

present modified approaches to both methods, with the primary focus on the latter method. We 

present our implementation in Chapter 5.  

 

Industry oriented approaches will apply methods that yield immediate and tangible results, and 

thus model complexity should also be a key focus of our experiment. Many approaches to the 

classification of customers and the prescription of optimal policies have been published recently 

due to the rapid advancement of the eCommerce industry. However, it will be a major challenge 

to build a scalable and practical solution that should allow even non-scientific parties to appreciate 

added value of robust fraud detection program. 

 

1.1 Industry Overview 
 

The objective of this research is to provide a means to robustly detect fraud on large scale 

eCommerce networks, a severe problem costing the eCommerce industry major financial loss if it 

is not cost-effectively resolved. Traditionally, heuristic rules are applied to classify whether each 

transaction or customer is fraudulent. Evidently, on large scale eCommerce platforms with over 

millions of customers transacting regularly, manual heuristic evaluation is not an ideal solution as 

it requires the human input from an ever-growing team of customer analysts. Furthermore, the 

thresholds and rules designated which detect fraud may be subject to change over time. As an 

eCommerce service expands, it is essential to construct an automated system that will be able to 

replicate human judgement on a large scale, and potentially supersede the predictive capability of 

human judgement. 

 

The customer transaction data provided in this thesis is supplied by our client, a multimillion dollar 

valuated company based in India, serving over 120 million customers as of June 2016, which we 
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will refer to as Company A. Company A’s regular operations primarily consists of online bill 

payment services, business-to-consumer (B2C) marketplace, mobile banking, and virtual 

currency. They constitute a direct-to-home bill payment service system, allowing its customers to 

perform bill payments for landline, cell phone, internet service, electricity and hydro bills. 

Furthermore, Company A facilitates an online marketplace where customers can purchase physical 

goods or services using credit card and/or virtual cash, and have such goods shipped to their 

physical address. 

 

The reduction of fraud on our client’s existing infrastructure is crucial to the long-term cost-

reduction effort. The need for a robust, efficient, and accurate form of automated fraud detection 

is higher than ever considering Company A’s recent business objectives to move into the realm of 

mobile banking. As the platform scales to meet the demands of almost a billion people, the problem 

of fraud is becoming an ever-increasing factor in determining the success of Company A. The fact 

that the eCommerce industry in general is experiencing a major surge in scale and volume only 

serves to exacerbate the problem of fraudulent behaviour due to rapid expansion. 

 

Company A is not alone in the emerging eCommerce market in India. Key players have already 

existed prior to Company A’s emergence in the eCommerce industry. Direct competitors that offer 

an online marketplace to hundreds of millions of Indian consumers include Flipkart, Snapdeal, 

and Amazon India, all of which are billion dollar valuated companies. Provided this, Company A’s 

recent emergence can be viewed as an eager attempt to break into the already existing eCommerce 

industry. However, Company A offers the unique advantage over its competitors by providing a 

direct integration between an online marketplace, a direct payment system, and online banking 

platform. This integration increases the volume of transactions on the platform, requiring a large 

and sophisticated fraud detection team to assist with. 

 

1.2 Objectives & Motivation 
In this work, our aim is to develop significant improvements to the fraud detection mechanism of 

Company A, via the application of statistical learning methods presented in the literature, as well 

as devising a new robust real time system that applies stochastic modelling and analysis. This new 
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fraud detection system will account for both categorical variables and numerical variables, and 

will run in simulated real time to capture fraudulent behaviour with acceptable confidence levels. 

We segment our research effort into 3 phases. 

 

1. The first phase will be to apply standard data analysis to extract useful insight from the 

observed features, aimed specifically at detecting fraud.  

2. The second phase will apply conventional statistical learning models found in literature to 

our data, subsequently examining each model’s effectiveness. These models include 

logistic regression, Naïve Bayesian classifier, and tree-based methods. 

3. The third phase involves constructing a stochastic framework that will capture the 

behaviour of customers on the eCommerce network, and will be able to eliminate instances 

of fraud in real-time, allowing us to capture fraud in short succinct time intervals with high 

probability. 

 

1.3 Research Contribution 
 

This thesis concentrates on the application of established methodologies and development of new 

methodologies to classify fraudulent behaviour on a large-scale eCommerce network. It aims to 

provide a solid theoretical foundation to understand each of the models applied, and the benefits 

and disadvantages of each model. In the second part of the thesis, we aim to develop a novel 

stochastic model based on the Hidden Markov Model. We compare the effectiveness of the model, 

and propose a framework to effectively classify and combat fraud. In summation, this thesis 

addresses two main concepts, and is presented in two major sections. 

 

1. A comparative study between commonly applied classification methods for fraud detection 

for eCommerce platforms based on the collected data. The models investigated are Logistic 

Regression, Naïve Bayesian Classifier, Decision Tree and Random Forest. 
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2. The development of an algorithm, based on Hidden Markov Modelling, to better describe 

customer behaviour over time, and classify fraudulent behaviour on the eCommerce 

network. 

 

From an application standpoint, this is the first time that HMM modelling has been applied to 

detect fraud on eCommerce networks. We provide a substantial amount of new research 

considering stochastic modelling for this purpose. First, we develop a comparative study between 

our algorithm, and conventional methods of classification, as investigated in Chapter 3. Secondly, 

we construct observations from a multidimensional set of features related to customer spending, 

as opposed to the previous implementations of HMM for fraud detection, which considers only a 

single source of numerical spending data (Srivastava 2008). This allows us to base our model on 

higher dimensionality, increasing the robustness the model. Furthermore it constitutes a 

combination of transactional data from multiple sources, where each data source contains a 

different kind of information. With respect to the clustering mechanism that assigns time 

windowed features to a cluster, there is a slight modification to the K-Means algorithm to include 

an observation symbol to indicate that no spending has occurred within that time period. 

 

1.4 Thesis Organization 
The thesis is organized into 6 distinct Chapters. Chapter 1 presents a high level overview of the 

industry and the motivation behind our research. Chapter 2 outlines the definitions of the observed 

variables, and illustrates how to build aggregate features over a customer’s entire lifetime. Chapter 

3 explores the many classical classification techniques used to detect fraud and evaluates each 

classifier’s performance. Chapter 4 provides theoretical background for Hidden Markov Models. 

Chapter 5 illustrates the process of building discrete time observation symbols used for Hidden 

Markov Modelling, and provides an online fraud detection system based on Hidden Markov 

Modelling. Chapter 6 summarizes our findings and present further ideas to improve our modelling 

process. 
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Chapter 2. Data Analysis and Feature Extraction 
 

2.1 Platform Design and Architecture 
 

Though Company A’s platform consists of a single eCommerce service, it is separated into two 

distinct entities, the marketplace, the virtual wallet, and the registration portal. The marketplace 

is an exchange where vendors, also known as merchants, list goods and services for sale and their 

respective prices. Vendors are registered with the system, and the marketplace provide consumers 

with an online store where consumers can browse the merchandise, and have the merchandise 

shipped to their desired location from the merchant. 

 

The registration portal consists of relevant data that the user inputs one-time upon registering on 

the platform. The data is categorical in nature, and refers to registration parameters such as email 

verification, phone verification, and the type of account. All of the data is categorical in nature and 

non-dynamic in time. 

 

The virtual wallet is a place where customers can convert real currency into virtual currency. This 

virtual currency is usable on Company A’s marketplace to purchase goods and services. One 

advantage of using virtual currency is that it provides a simplified means to obtain rewards and 

rebates as promotional offers. Furthermore, Company A’s virtual currency allows customers to 

exchange currency amongst one another. With the emergence of mobile banking in developing 

countries, virtual currency can now be used as a substitute for real currency, where users are 

carrying around their mobile devices to pay for physical goods and services in lieu of cash1. 

 

                                                

 
1  The use of virtual currency on mobile device instead of real currency is an area of rapid 

development in developing countries, such as India and China. 
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Marketplace data refers to records of everyday transactions taking place on the eCommerce 

platform. Virtual wallet data refers to the transactions that alter the amount of virtual currency 

stored on each customer’s virtual bank accounts. And registration data refers to parameters that 

the customer used to register an account. Data from all three sources are combined to form a 

summary table. Specifically, marketplace and virtual wallet data are aggregated into discreet time 

windows, which is further outlined in Chapter 5. Alternatively, numerical features can summarized 

across the entire time history each customer, as outlined in Chapter 2. Subsequently, transactional 

data is merged with one-time only registration data to form a complete data set for our experiment. 

 
Figure 2.1.1 Raw data obtained to generate summary features originate from multiple sources on the database. 

The marketplace and the virtual wallet keep track of customer spending and purchasing behaviour 

in two separate databases. These two databases contain transactional data and the registration 

database contains one-time registration data, which is in a categorical format. All the data can be 

merged together using the customer_id key, which traces each record on the database to its 

respective unique customer. 

 

2.2 Description of Observed Features 
The transaction period spans over the entire time frame of 6-months, from March 1st 2016 to July 

9th 2016, consisting of a total of 7575 customers, and 336550 total transactions. All customers, 

from our perspective are provided a label, indicating whether they are fraudulent (1) or healthy 

(0). We define, 
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- Training Set – A majority random sample of the customers in our data set, where the 

observations are constituted by each of the customer’s transactions. The data in this set are 

used to construct the model and estimate the classification model parameters. The training 

data set is a 75% random sample without replacement relative to the full data set of 

customers. 

- Validation Set – A random sample of the data set that is selected for testing and validation 

purposes. This sample is completely separate from the training set as it simply contains all 

of the customers and their respective transactions that do not belong to the training set. The 

validation set is used for testing purposes to evaluate the classification accuracy of the 

model. The validation set is a 25% random sample without replacement relative to the full 

data set of customers. 

  

Notation Full Data Set Training Set Validation Set 
𝑁𝑖 (Number of Total Customers) 7575 5681 1894 

𝑁𝐹=1 (Number ofTotal Fraudulent 
Customers) 

348 262 86 

Figure 2.2.1 Training and validation data set. 

2.3 Feature Definitions & Effectiveness 
In this section, we explore the feature definitions of each customer, and present how features are 

defined. Categorical features are transformed into binary dummy variables (0, 1), and numerical 

features can either be aggregated over discrete time periods. Time window aggregation will be 

presented in Chapter 5. In this section we present aggregation over the entire customer lifetime. 

We utilize the following features for fraud classification, when aggregating over the customer 

lifetime (Udo & Taudes, 1987).  

 

Feature Name Coding Definition 
sum_gmv v1 Total spending (GMV) of a customer. 
count_txn v2 Total number of transactions of a customer. 
mean_diff_purc v3 Average time in between transactions of a customer. 
count_distinct_cat v4 Number of distinct purchasing categories exhibited by 

customer. 
mean_gmv_per_txn v5 Average GMV per purchase per customer. 
sum_gmv_wal v6 Total GMV in the customer’s  virtual wallet. 
count_txn_wal v7 Total number of transactions in the customer’s virtual wallet. 
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mean_diff_purc_wal v8 Average time in between transactions of a customer’s virtual 
wallet. 

mean_gmv_per_txn_wal v9 Average GMV per purchase per customer in virtual wallet. 
phone_isverified b1 Indicates whether or not a customer’s email address was 

verified using SMS2 services. 
email_isverified b2 Indicates whether the customer has verified their email via 

email reply confirmation. 
wallet_type_SCW b3 Indicates whether or not the customer has activated a regular 

(SCW) type virtual wallet. 
wallet_type_NO_WALLET b4 Indicates if the customer has no virtual wallet. 
wallet_type_PRIME b5 Indicates if the customer has activated a premium (PRIME) 

wallet. 
Figure 2.3.1 Feature definitions of categorical and numeric features. 

2.3.1 Feature Aggregation  

Several methods can be applied to model the behaviour of customers over time, some of which are 

outlined in (Udo & Taudes, 1987). In our particular application, we provide two methods of 

aggregation. The full time period aggregation consists of the summary statistic aggregation over 

each customer’s entire purchasing history. Whereas the discrete time aggregation method 

aggregates each customer’s purchasing history over sliding time windows. 

 

Identification Key Aggregation Description Example 
Customers Full Time 

Period 
Accumulation of feature over the full 6-
month time frame. 

Total GMV 

Customers Discrete Time Aggregation of a time window set of 
features over each customer’s lifetime. 

Total GMV per 12 
hours. 

Table 2.3.1 Feature aggregation definitions. 

Fraud identification will function on a customer-centric basis, defined as the identification key, all 

transactions are attributed to individual customers and aggregated over fixed and independent time 

intervals. The experiment will seek to identify fraudulent customers by examining each customer’s 

features. The following features are obtained from complete transaction history time window, 

denoted by 𝛷, aggregate observed time series data for each customer over the entire transaction 

history. This will be further detailed in Chapter 5. 

                                                

 
2 SMS or Short Messaging Service is a standard communication protocol for telephone and world 

wide web services. 
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2.4 Performance Metrics 
For purposes of model evaluation, the model will classify each customer, provided their purchasing 

history, as 0 or 1. We refer to this as the predicted label, which is output from the proposed 

classification model.  Each customer will also be assigned a true label of 0 or 1. The true label is 

provided by business analysts, where we assume that their knowledge about the customer 

constitutes the actual state of affairs. Model performance inform us of the comparative accuracy 

of the predicted label and the true label. We define the model metrics in Table 2.4.1. 

 

Metric Definition 
True Positives (TP) The number of occurrences where both the feature value and the actual label are 

true (1). 
False Positives (FP) The number of occurrences where the feature value is true (1) but the actual 

label is false (0). 
True Negatives (TN) The number of occurrences where the feature value is false (0) but the actual 

label is also false (0). 
False Negatives (FN) The number of occurrences where the feature value is false (0) but 

the actual label is true (1). 
True Positive Rate (TPR) The rate of detection, formula described by Equation ( 2.4.1 ) 
False Positive Rate (FPR) The rate of false detection, formula described by Equation ( 2.4.2 ). 

 
Table 2.4.1 Metric definition table. 

2.4.1 Detection Rate (True Positive Rate - TPR) 

 

The detection rate, also known as true positive rate (TPR), is defined as the proportion of the 

detected true positives (TP) to all the positives in the set, which includes the number of true 

positives (TP) in addition to the number of false negatives (FN). Having a high proportion ensures 

that most of the positives in the set are detected. In our application, a high detection rate, or TPR, 

ensures that the majority of the cases of fraud are detected, thus this is a metric which should be 

maximized.  

 𝑇𝑃𝑅 = 	
𝑇𝑃
𝑃 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

( 2.4.1 ) 
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2.4.2 False Positive Rate 

The false positive rate (FPR) of the classifier determines the proportion of inaccurate predictions, 

known as false positives (FP), relative to all of the negatives of the set, which is the addition of the 

number of true negatives (TN) and false positives (FP). Therefore, a good classifier minimizes the 

FPR. For fraud detection, the FPR denotes the proportion of people who were detected to be 

fraudulent, but were in fact non-fraudulent. 

 

 𝐹𝑃𝑅 = 	
𝐹𝑃
𝑁 =

𝐹𝑃
𝑇𝑁 + 𝐹𝑃 

( 2.4.2 ) 

 

2.4.3 Effectiveness of Classification 

First, we evaluate each classifier’s effectiveness by the following metrics. Provided the output of 

a classifier we can produce the following metrics to measure the classifier’s effectiveness. For 

classification methods, such as logistic regression, it is possible to tune the algorithm to maximize 

TPR, while reducing FPR, or vice-versa. For example this can be accomplished by adjusting the 

threshold levels of a logistic regression model. In binary classification, the effectiveness of the 

classification algorithm depends on both the maximization of detection rate (TPR) and the 

minimization of the false positive rate (FPR). We construct a receiver operating characteristic 

(ROC) curve to measure the performance of each classification model. 
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Figure 2.4.1 Illustration of the ROC Plane. 

As illustrated in Figure 2.4.1 a point that lies in the perfect diagonal along the ROC plane is a bad 

predictor as it is as good as randomly guessing which class a variable belongs to. Point A is a good 

classifier because it has a higher TPR than FPR. For point C located below the random guess line, 

we see that a bad classifier with FPR consistently lower than the TPR can be inverted to produce 

a good classifier. In binary classification, a classifier, denoted by f(x) assigns a probability as to 

what class (0, 1) it believes the data point to belong to. To accomplish this, a threshold T is set, 

and each data point is evaluated based on its value relative to that data point.  

 

 𝑓 𝑥5 < 	𝑇 => 𝑥5𝜖	0 

𝑓 𝑥5 ≥ 		𝑇 => 𝑥5𝜖	1 

( 2.4.3 ) 

 

According to the classification rule set out in Equation ( 2.4.3 ) if T = 0.3 for example, then if 

𝑓(𝑥5) ≥ 0.3 it would belong to class 0, else it would belong to class 1. In our case the threshold 
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parameter can take on multiple values. By varying the threshold value, T, we adjust the true 

positive rate (TPR) which is generally inversely proportional to the false positive rate (FPR). For 

purposes of fraud detection, more value is placed on obtaining higher TPR values while allowing 

for a higher FPR. This is because organizations typically place more importance on finding all 

instances of fraud, over reducing the number of false positives, as the cost of investigation is 

usually less than the cost suffered due to undiscovered fraud. 

 

Ultimately we evaluate the effectiveness of a model based on the shape of the ROC curve. As we 

adjust the classification threshold T, there is a TPR and FPR value associated with it, constituting 

a point on the ROC plane. A collection of many points forms a curve on the ROC plane, 

characterizing the behaviour of the classifier. In general, the greater the area under the ROC curve 

the better the performance of the classifier. However, for our application, since we specify an FPR 

threshold, to which we maximize the detection rate of the algorithm, we do not need to examine 

every point on the ROC curve, only the point at which the detection rate is maximized without 

exceeding the FPR limit. However, we present a full ROC plot in Figure 3.5.1 of each of our 

classifiers to present a comparison on ROC between each classifier. 

 

2.5 Individual Feature Effectiveness  
To evaluate the effectives of binary variables, which are variables which can only take on a value 

of 0 or 1, we examine the classification metrics by counting the distinct features which match the 

label of the customer (0, 1). The feature effectiveness table is presented in Table 2.5.1, 

 

Feature Name Coding TP FP TN FN TPR FPR 
phone_isverified b1 272 7199 28 76 0.7816 0.9961 
email_isverified b2 70 5756 1471 278 0.2011 0.7964 
wallet_type_SCW b3 50 2818 4409 298 0.1436 0.3899 
wallet_type_NO_WAL
LET 

b4 285 3570 3657 63 0.8189 0.4939 

wallet_type_PRIME b5 2 195 7032 346 0.0057 0.0269 
Table 2.5.1 Feature effectiveness of binary registration features. 
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As evident in Table 2.5.1 we see that feature b1 is prone to detecting false positives among fraud. 

Which suggests that the inverted feature3 ~b1 value is better suited at predicting fraud. The same 

can be said for feature b2 to a lesser degree. In fact, for all features, except b4, it is more appropriate 

at detecting false positives among fraud. This is because b1 and b2 are verification parameters.  b3 

and b5 and indicators of whether or not a customer has registered for an online virtual wallet (of 

which there are two types). As more of the following features take on a value of 1, the likelihood 

of the customer committing fraud decreases. Whereas, if b4 is true, meaning a customer has no 

virtual wallet, the likelihood of that customer committing fraud is higher.4 For numerical features, 

which are features that fall in the range [0, ∞), we set a binary threshold as the median between 

the largest and smallest value of the dataset. 

 

 
𝑇 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑆 =

𝑀𝑎𝑥 𝑆 −𝑀𝑖𝑛	(𝑆)
2  

( 2.5.1 ) 

And perform classification based on the threshold T, illustrated in Equation ( 2.4.3 ). 

 

Feature Name Coding TP FP TN FN TPR FPR 
sum_gmv v1 276 3511 3716 72 0.7931 0.4858 
count_txn v2 82 3685 3542 266 0.2356 0.5099 
mean_diff_purc v3 62 3592 3393 261 0.1919 0.5142 
count_distinct_cat v4 45 3373 3854 303 0.1293 0.4667 
mean_gmv_per_txn v5 305 3482 3745 43 0.8764 0.4818 
sum_gmv_wal v6 302 3485 3742 46 0.8678 0.4822 
count_txn_wal v7 103 3683 3544 245 0.2959 0.5096 
mean_diff_purc_wal v8 115 3559 3446 229 0.3343 0.5081 
mean_gmv_per_txn_
wal 

v9 306 3481 3746 42 0.8793 0.4817 

Table 2.5.2 Feature effectiveness of ordinal features. 

                                                

 
3 The inversion of a feature implies positive values (1) becoming 0, and negative values (0) 

becoming (1). 
4 Note that the inversion of parameters to be more effective at detecting is not necessary when 

implementing a logistic regression. 
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Each feature itself can be used as a weak classifier, for certain features where the TPR is 

significantly greater than the FPR (or vice versa for inverted features). There is a demonstrable 

indication of effectiveness of such a feature. 
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Chapter 3. Classification 
This chapter presents the traditional classification techniques that have been applied for online 

fraud detection. The main approaches are described in detail, and a specific case study is presented 

to illustrate the function and effectiveness of each classification technique on real data provided 

by our industry partner. We investigate the application of Logistic Regression, Naïve Bayesian 

Classifier, Decision Tree, and Random Forest to detect occurrences of fraud within aggregated 

customer data. Subsequently, we evaluate the effectiveness of each algorithm based on the 

Receiver Operator Curve (ROC), a common metric to evaluate the performance of classification 

algorithms. This indicates the performance of the True Positive Rate (TPR) to the False Positive 

Rate (FPR). 

 

3.1 Logistic Regression 
In this section, the theoretical background for logistic regression and parameter estimation using 

maximum likelihood estimation is presented. Subsequently, we present the relevant metrics 

specific to Logistic Regression evaluation. We measure the accuracy of the logistic regression as 

a regression tool by examining the deviance or AIC. We can also measure the performance of 

logistic regression as a classifier, by examining its ROC. 

 

The application of Logistic Regression to fraud detection has been explored in a wide array of 

research. Logistic regression is widely applied because it provides easily interpretable results and 

straightforward implementation compared to other classification models. Research proposed in 

(Shen, et al., 2007) investigates the use of logistic regression for detecting credit card fraud. It 

finds that logistic regression is strongly suited for fraud detection applications. Furthermore, 

research proposed in (Marazanto, 2010) applied the use of logistic regression for fraud detection 

in eCommerce networks. (Marazanto, 2010) focused on detecting eCommerce vendors which 

committed fraud by deceiving the reputation systems of the eCommerce network. They discovered 

that logistic regression is a powerful tool to detect this specific type of fraud as it yielded a very 

low false positive rate. 
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Our approach involves fitting a logistic regression model on the available data, both categorical 

and numerical, and measuring the model performance. To compare, first, we fit a logistic 

regression on only the available categorical variables. Second, we fit a logistic regression model 

on only available numerical features. And finally, we fit a logistic regression model on an optimal 

combination of both numerical and categorical variables, as determined by the backward 

elimination process.  

 

Notation Definition 
𝐹G Indicator function (0, 1) that customer i is fraudulent, also known as the true label. 
𝑁H Maximum number of total iterations for the Newton-Raphson algorithm. 
𝛽J Logistic regression coefficient on the jth feature. 
ℒ Log-likelihood function for all observations. 
𝑃G Probability of fraud for customer i. 
(n) Indicator for the nth iteration of the Newton-Raphson method. 
f(x) Logistic function on x. 

P(X) Probability of fraud, provided set of variables X 
X Set of numeric and/or categorical variables, per customer. 
𝜷 Coefficient matrix for logistic regression. 
𝛽J Coefficient for feature j. 
𝑥GJ Variable x for customer i on feature j. 
𝑿𝒊 Set of 𝑥GJ belonging to customer i. 
𝑁O Number of customers in the dataset. 
𝛾 Tolerance limit for Newton-Raphson method. 

Table 3.1.1 Logistic regression notation. 

3.1.1 Introduction to Logistic Regression 

Logistic regression provides a parametric form to express the probability of an event occurring as 

probability between 0 and 1. Logistic regression applies the use of the logistic function which was 

first introduced in the 19th century to describe population growth and autocatalytic chemical 

reactions (Cramer, 2002). We denote the logistic function as f(x), 

 

 
𝑓 𝑥 =

1
1 + 𝑒QR =

𝑒R

1 + 𝑒R 
( 3.1.1 ) 

The logistic function exhibits the specific property where the derivative of f(x) can be written as, 
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 𝑑
𝑑𝑥 𝑓 𝑥 = 𝑓(𝑥)(1 − 𝑓 𝑥 ) 

( 3.1.2 ) 

The fact that the derivative of the logistic regression can be written in this form will prove useful 

for parameter estimation of the model. Another important property of the logistic function is that 

it is bounded between 0 and 1, which is ideal for modelling the probability of events occurring, in 

our case the probability of fraud.  

 

3.1.2 Theoretical Background 

For fraud detection, we define the probability of fraud as P(X), bounded between 0 and 1. This 

value indicates the probability of fraud for each customer’s observed variables X. We define the 

log odds as the logarithm of the odds of P(X), where the odds are defined as the P(X)/(1- P(X)). 

The odds can be understood as the ratio of fraud, expressed as P(X), to the ratio of non-fraud, 

expressed as 1 - P(X). As an extension to linear regression, logistic regression involves expressing 

the log odds of P(X) as a linear combination of the observed variables X.  

 

 
𝑙𝑜𝑔

𝑃(𝑿)
1 − 𝑃(𝑿) = 𝜷𝑿 

( 3.1.3 ) 

Where for j features, 

 

 𝜷𝑿𝒊 = 𝛽V +	𝛽5𝑥G5 …+ 𝛽J𝑥GJ ( 3.1.4 ) 

For j features, and customer i, we can represent all features 𝑥 as a single vector, and the universal 

coefficients related to each feature 𝛽J (we note that the logistic regression coefficients apply to all 

customers), 

 

𝜷𝑿𝒊 = 𝛽V 𝛽5 … 𝛽J

1
𝑥G5
𝑥GX
⋮
𝑥GJ

 

( 3.1.5 ) 
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Where each feature value can be both categorical or numerical. Categorical variables must be in 

the form of binary notation (0, 1). In our model 𝛽 represents the unknown parameters of the model, 

and x represents the data. Numerical values can be expressed as any real number. Alternatively, 

solving for P(X), logistic regression can be expressed as, 

 

 
𝑃 𝑿 = 	

𝑒𝜷𝑿

1 + 𝑒𝜷𝑿 = 	
1

1 + 𝑒Q𝜷𝑿 
( 3.1.6 ) 

 

Logistic regression creates a linear classifier over the aggregate features to forecast the log odds 

that a customer is fraudulent on the network. We can use this approach to test the effectiveness of 

each feature by examining the p-values associated with each parameter value to examine the 

effectiveness of features.  

 

3.1.3 Maximum Likelihood 

The maximum likelihood estimation method provides a means to estimate the coefficients of a 

logistic regression model. We express the probability of fraud, P, for each customer i, as, 𝑃G 

 

 	𝑃G =
1

1 + 𝑒Q𝜷𝑿𝒊 
( 3.1.7 ) 

 

Let 𝐹G denote the true fraud label of the customer i, as it can take on values (0, 1). P represents the 

general probability of fraud for any customer. Consider 𝑁O number of customers in the population. 

The likelihood of the model can be represented as, 

 

 
𝐿 𝑃 = 𝑃G [\ 1 − 𝑃G 5Q[\

]

G^5

 
( 3.1.8 ) 

 

To simplify the maximization of the likelihood function, we can take the log of the likelihood 

function, otherwise referred to as log likelihood. 
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ℒ = log[𝐿 𝑃 ] = [𝐹G	𝑙𝑜𝑔	(𝑃G 𝑋G, 𝜷 ) + 1 − 𝐹G 	𝑙𝑜𝑔	(1 − 𝑃G 𝑋G, 𝜷 )]

]

G^5

 
( 3.1.9 ) 

 

We posit the likelihood function as a function of model parameters 𝜷, 

 

 
ℒ 𝛽 = 	 [𝐹G	𝑙𝑜𝑔	(𝑃G 𝑋G, 𝜷 ) + 1 − 𝐹G 	𝑙𝑜𝑔	(1 − 𝑃G 𝑋G, 𝜷 )]

]

G^5

	 

ℒ 𝛽 = 	 [	𝑙𝑜𝑔	(1 − 𝑃G 𝑋G, 𝜷 )]
]

G^5

+ [	𝐹G	𝑙𝑜𝑔	(𝑃G 𝑋G, 𝜷 )]
]

G^5

 

ℒ 𝛽 = 	 [	𝑙𝑜𝑔	(1 − 𝑃G 𝑋G, 𝜷 )]
]

G^5

+ [	𝐹G	𝑙𝑜𝑔	
𝑃G 𝑋G, 𝜷

1 − 𝑃G 𝑋G, 𝜷
]

]

G^5

 

ℒ 𝛽 = 	 [	𝑙𝑜𝑔	(1 − 𝑃G 𝑋G, 𝜷 )]
]

G^5

+ [	𝐹G		𝜷𝑿𝒊]
]

G^5

 

ℒ 𝛽 = 	 [	−(log 1 + 𝑒	𝜷𝑿𝒊)]
]

G^5

+ [	𝐹G		𝜷𝑿𝒊]
]

G^5

 

( 3.1.10 ) 

 

 

( 3.1.11 ) 

 

 

( 3.1.12 ) 

 

 

( 3.1.13 ) 

 

 

( 3.1.14 ) 

 

Taking the derivative of the log likelihood function we obtain, 

 

 𝜕ℒ
𝜕𝛽J

= −
1

1 + 𝑒𝜷𝑿𝒊 𝑒
𝜷𝑿𝒊 𝑥GJ

]

G^5

+ [	𝐹G		𝑥GJ]
]

G^5

 
( 3.1.15 ) 

 

We see that 𝑃G is a function of the weights 𝜷𝑿𝒊 . We can say for each observation (or customer) i, 

we maximize the log-likelihood. And therefore for all 𝑁O observations, we compute the overall log 

likelihood as,  

 𝜕ℒ
𝜕𝛽J

= 𝐹G − 𝑃G(𝑋G, 𝜷) 𝑥GJ

]

G^5

 
( 3.1.16 ) 
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Where the objective is to find the optimal parameters 𝛽 that will maximize ℒ, by setting the partial 

derivative of the log-likelihood function to 0 for all parameters 𝛽J, such that, 

 

 𝜕ℒ
𝜕𝛽J

= 0, 𝑓𝑜𝑟	𝑖 = 0,1, . . 𝑗 
( 3.1.17 ) 

 

Provided that the gradient of the likelihood is a concave function, we can employ a gradient ascent 

algorithm to discover the local maxima until the condition in Equation ( 3.1.17 ) is  met. There are 

a variety of methods to computationally solve the problem, as there rarely exists a closed form 

solution. We present the Newton-Raphson Algorithm as a potential solution. 

 

3.1.4 Newton Raphson Algorithm for Parameter Estimation 

In most cases, the solution to the maximization of the log likelihood, ℒ, as illustrated in Equation 

( 3.1.16 ) will not have a closed form solution. Therefore, an iterative numerical method must be 

applied to compute an approximation to the parameter values that satisfy the equation. We follow 

the Newton-Raphson iterative gradient descent algorithm, illustrated in (Shalizi, 2017) to 

sufficiently approximate the solution to Equation ( 3.1.16 ). First, we denote 𝑓(𝛽J) as,  

 

 
𝑓(𝛽J) =

𝜕ℒ
𝜕𝛽J

 
( 3.1.18 ) 

 

Suppose 𝑓(𝛽J), is a smooth well defined function of only 𝛽J. It is possible to apply the Newton-

Raphson method to find the solution. We initialize 𝛽(V) equal to a random number (in our example 

we select 0). Subsequently, we iteratively compute 𝛽(i), and for each subsequent iteration n + 1, 

we define the parameter update algorithm for the univariate case as, 

 

 
𝛽(ij5) = 𝛽(i) −

𝑓′(𝛽(i))
𝑓′′(𝛽(i)) 

( 3.1.19 ) 
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By extension, we can apply the Newton-Raphson method to the multivariate case, where 𝑓 is a 

multivariate function consisting of several dimensions 𝑓(𝜷), where 𝜷 = (𝛽V, 𝛽5, … , 𝛽J). In this 

scenario, we see that, our smooth well defined function illustrated in Equation ( 3.1.18 ) becomes 

the gradient of the likelihood function, as defined as, 

 

 𝑓(𝛽J) = ∇ℒ(𝜷(i)) ( 3.1.20 ) 

 

Where the standard vector calculus gradient is defined as,  

 

 
∇ℒ 𝜷 i =

𝜕ℒ
𝜷V

i ,
𝜕ℒ
𝜷5

i , … ,
𝜕ℒ
𝜷J

i  
( 3.1.21 ) 

 

In this case, Equation ( 3.1.19 ) becomes,  

 

 𝜷(ij5) = 𝜷(i) − 𝐻Q5[ℒ 𝜷 i ]∇ℒ(𝜷(i)) ( 3.1.22 ) 

 

Where 𝜷 is a vector, representing the coefficients for j features, and 𝐻[ℒ 𝛽 i ] is the Hessian 

matrix of the likelihood function. 

 

 𝜷 = 𝛽V, 𝛽5, 𝛽X, … , 𝛽J  ( 3.1.23 ) 

 

In the multivariate case the gradient ∇ℒ 𝜷 i  is defined as, 

 

 
∇ℒ 𝜷 i =

𝜕ℒ
𝜕𝛽5

(i) ,
𝜕ℒ
𝜕𝛽X

(i) ,
𝜕ℒ
𝜕𝛽n

(i) , … ,
𝜕ℒ
𝜕𝛽i

(i)  
( 3.1.24 ) 

 

𝐻[ℒ 𝛽 i ] is the Hessian matrix of the likelihood function, representing a matrix of the second 

derivative with respect to different combinations of 𝛽’s.  
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𝐻[ℒ 𝜷 i ] =

𝜕Xℒ
𝜕𝛽5X

⋯
𝜕Xℒ

𝜕𝛽5𝜕𝛽J
⋮ ⋱ ⋮

𝜕Xℒ
𝜕𝛽J𝜕𝛽5

⋯
𝜕Xℒ
𝜕𝛽JX

 

( 3.1.25 ) 

 

As follows, the inverse of the Hessian matrix 𝐻Q5[ℒ 𝜷 i ] is the inverse of the matrix illustrated 

in Equation ( 3.1.25 ). The computation of the inverse Hessian matrix can be computationally 

intensive. Therefore, a series of computational techniques have been developed to approximate it. 

In this example, we will not apply such techniques because the Newton-Raphson method is 

illustrated on a small scale for example purposes only, and calculating 𝐻Q5[ℒ 𝜷 i ] without 

approximation methods will be sufficient. 

 

For iterations 1 to n, we initialize the coefficients 𝜷(V) = [0, 0, 0]  and begin to solve for 𝛽 . 

Subsequently, we iteratively compute the solution, iterating through 𝛽 ’s, for n = 1 until the 

iteration limit. The iteration limit is imposed so that the program does not run for an infinite amount 

of time. 𝜷(i)  represents the computed coefficients up until the nth iteration. 	𝜷(i)  is iteratively 

computed until one of two stopping conditions is met. The first stopping condition stipulates that 

the difference between the coefficients is less than some tolerance value 𝛾 . We compute the 

difference using the Euclidean norm,  

 

 𝜷 ij5 −	𝜷 i < 𝛾 ( 3.1.26 ) 

 

Where the Euclidean norm is defined as, 

 

 
𝜷 = 𝛽5X + 𝛽XX + ⋯+ 𝛽JX 

( 3.1.27 ) 
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The second stopping condition stipulates that the total number of iterations must not exceed some 

maximum value, Nt, that is,  

 

 𝑛 < 𝑁H ( 3.1.28 ) 

 

The Newton-Raphson method continues to iteratively compute new values of 𝜷(i) until either one 

of the stopping conditions stipulated in Equation ( 3.1.26 ) or Equation ( 3.1.28 ) is met. Ideally 

𝜷(ij5) −	𝜷 i → 0, as 𝑛 → ∞, however, as long as n is sufficiently large, the final parameters 

estimated by the Newton-Raphson method will sufficiently estimate the parameters of the model.  

 

3.1.5 Deviance for Logistic Regression 

 

We define the proposed model as the model that may apply only to a subset of the parameters, 

whereas the saturated model is a model that contains as many parameters as observations. Such a 

model will produce a perfect fit, and therefore is a redundant model. We present the standard 

metric known as deviance, which is a measure of goodness-of-fit for logistic regression models. 

We calculate deviance by computing the difference between the log-likelihood, ℒ, of the proposed 

model, with model parameters 𝑃 𝐹 𝜃s  with the log likelihood of the saturated model 𝑃 𝐹 𝜃t . 

We calculate deviance as, 

 

 𝐷 𝑥 = −2 ℒ 𝑃 𝐹 𝜃s −	ℒ 𝑃 𝐹 𝜃t  ( 3.1.29 ) 

 

3.1.6 Akaike Information Criterion 

The Akaike Information Criterion (AIC) is a measure of the goodness of fit taking into account a 

penalty for an increased number of parameters. AIC is defined as, 

 

 𝐴𝐼𝐶 = ℒ 𝑃 𝐹 𝜃s − 𝑘s ( 3.1.30 ) 
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Where ℒ  is the likelihood of the estimator based on the observed data x, and ℒ 𝑃 𝐹 𝜃s  

represents the log likelihood. kM represents the number of parameters in the model. The AIC 

penalizes the model for having a high number of parameters, and rewards the model maximizing 

the log-likelihood of the model. 

 

3.1.7 Applying Logistic Regression 

We perform a logistic regression on the binary features specified in Section 3.1. We see that the 

majority of the variables have a significant effect on predicting whether or not a customer is 

fraudulent. Data is randomly split, model fitting is performed on that training data, and model 

performance is checked on the validation data. The logistic regression models are constructed in 

the R programming language, and output is presented accordingly. 

 
Call: 
glm(formula = isFraudPred ~ b1 + b2 + b3 + b4 + b5, data = summaryDataEncoded) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-0.76744  -0.02324  -0.00410  -0.00410   0.99976   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.730185   0.019483  37.479  < 2e-16 *** 
b1         -0.635748   0.018779 -33.854  < 2e-16 *** 
b2         -0.108452   0.005785 -18.746  < 2e-16 *** 
b3          0.018112   0.008112   2.233   0.0256 *   
b4          0.037252   0.008021   4.644 3.47e-06 *** 
b5          0.014257   0.015151   0.941   0.3467     
--- 
 
 

Model Performance Count 
TP (True Positives) 80 
TN (True Negatives) 1752 
FP (False Positives) 420 
FN (False Negatives) 21 
FPR (False Positive Rate) 0.1933702 
TPR (True Positive Rate) 0.7920792 

Figure 3.1.1 Logistic Regression model performance. 
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3.1.8 Logistic Regression on Numerical Features 

We perform logistic regression on a set of numerical variables. Numerical variables in our data set 

fall within the range [0, ∞]. Though, practically the upper bound of this range is limited by a 

realistic number. Applying parameter estimation for logistic regression we obtain the following 

output. 

 
Call: 
glm(formula = isFraudPred ~ v1 + v2 + v3 + v4 + v5 + v6 + xv7 + xv8 + xv9, 
family = binomial, data = summaryDataEncoded) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.2586  -0.2376  -0.1559  -0.0858   4.8640   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -1.971e+00  1.878e-01 -10.495  < 2e-16 *** 
v1          8.883e-09  1.114e-09   7.977 1.51e-15 *** 
v2         -6.819e-03  2.826e-03  -2.413 0.015812 *   
v3         -1.551e-06  2.766e-07  -5.607 2.06e-08 *** 
v4         -5.135e-01  5.587e-02  -9.190  < 2e-16 *** 
v5         -7.188e-08  2.717e-08  -2.645 0.008162 **  
v6         -1.884e-05  4.095e-06  -4.600 4.23e-06 *** 
v7          6.105e-03  1.667e-03   3.662 0.000251 *** 
v8          1.763e-07  1.147e-07   1.538 0.124139     
v9          1.383e-03  8.256e-05  16.746  < 2e-16 *** 
--- 
 

3.1.9 Backwards Stepwise Selection 

In order to reduce the effects of overfitting, we perform the process of backwards stepwise 

selection (Symonds 2010) to select the most explanatory variables, and reduce the usage of 

redundant variables. The backwards selection. For logistic regression in particular we use the 

deviance metric for variable elimination. 

1. Build a saturated model, where all explanatory variables are included.. 
2. Fit a model with the remaining variables, evaluate the AIC of each variable, including the 

null model. 
3. Eliminate the variable with the lowest AIC, still greater than the null model. 
4. Go to step 2 and continue until all deviances are greater than the null AIC. 
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Step:  AIC=839.52 
isFraudPred ~ b1 + b2 + b3 + b4 + b5 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + 
v9 
 
B5 was removed. 

 

Step:  AIC=838.46 
isFraudPred ~ b1 + b2 + b3 + b4 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 
 
       Df Deviance     AIC 
- v8   1   810.81  836.81 
- v2   1   810.85  836.85 
<none>     810.46  838.46 
- v6   1   813.10  839.10 
- v7   1   816.00  842.00 
- v5   1   818.27  844.27 
- v3   1   838.64  864.64 
- b3   1   862.65  888.65 
- b4   1   872.49  898.49 
- v1   1   884.40  910.40 
- b2   1   894.45  920.45 
- v4   1   916.45  942.45 
- v9   1  1117.15 1143.15 
- b1   1  1157.24 1183.24 
 
V8 was removed. 
 
Step:  AIC=836.81 
isFraud ~ b1 + b2 + b3 + b4 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v9 
 
       Df Deviance     AIC 
- v2   1   811.16  835.16 
<none>     810.81  836.81 
- v6   1   813.35  837.35 
- v7   1   816.20  840.20 
- v5   1   818.61  842.61 
- v3   1   841.46  865.46 
- b3   1   862.97  886.97 
- b4   1   872.67  896.67 
- v1   1   885.09  909.09 
- b2   1   895.47  919.47 
- v4   1   917.10  941.10 
- v9   1  1117.61 1141.61 
- b1   1  1159.87 1183.87 
 
Step:  AIC=835.16 
isFraud ~ b1 + b2 + b3 + b4 + v1 + v3 + v4 + v5 + v6 + v7 + v9 
 
V2 was removed. 
 
       Df Deviance     AIC 
<none>     811.16  835.16 
- v6   1   813.40  835.40 
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- v7   1   816.20  838.20 
- v5   1   818.61  840.61 
- v3   1   841.49  863.49 
- b3   1   864.12  886.12 
- b4   1   874.41  896.41 
- v1   1   886.40  908.40 
- b2   1   897.79  919.79 
- v4   1   919.00  941.00 
- v9   1  1126.75 1148.75 
- b1   1  1165.40 1187.40 

 

We find the optimal logistic regression by applying the backwards selection algorithm. And 

evaluate the effectiveness of each feature based on deviance. From our logistic regression output 

we see that all of the explanatory variables have a strong significance (as determined by their 

respective p-values) in detecting instances of fraud versus non-fraud customers. 

 
Call: 
glm(formula = isFraud ~ b1 + b2 + b3 + b4 + v1 + v3 + v4 + v5 +  
    v6 + v7 + v9, family = binomial, data = trainSummaryDataEncoded) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.6763  -0.0987  -0.0512  -0.0228   5.4212   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -9.349e+00  3.135e+00  -2.983 0.002858 **  
b11         -6.071e+00  4.435e-01 -13.688  < 2e-16 *** 
b21         -2.220e+00  2.990e-01  -7.422 1.15e-13 *** 
b3           1.305e+01  3.103e+00   4.206 2.60e-05 *** 
b4           1.349e+01  3.110e+00   4.336 1.45e-05 *** 
v1           1.636e-08  2.201e-09   7.430 1.09e-13 *** 
v3          -1.024e-06  2.792e-07  -3.668 0.000244 *** 
v4          -6.759e-01  8.918e-02  -7.579 3.49e-14 *** 
v5          -1.032e-07  4.867e-08  -2.120 0.033987 *   
v6           1.982e-06  6.290e-06   0.315 0.752668     
v7           4.968e-03  1.950e-03   2.548 0.010823 *   
v9           1.593e-03  1.199e-04  13.282  < 2e-16 *** 

 

3.1.10 Model Performance 

We examine the performance of the logistic regression model and find that it performs moderately 

well at detecting fraud. Our experiments produce an effective true positive rate of approximately 

0.85, and a minimal false positive rate of 0.049. It is possible to adjust the classification threshold 
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to obtain a higher TPR (which is the main objective) whilst sacrificing the FPR, thereby increasing 

it. However, this is only used for model comparison only, thus it is not necessary.  

 

Model Performance Count 
TP (True Positives) 86 
TN (True Negatives) 2066 
FP (False Positives) 106 
FN (False Negatives) 15 
FPR (False Positive Rate) 0.04880295 
TPR (True Positive Rate) 0.8514851 

Figure 3.1.2 Logistic Regression model performance. 

 

3.2 Naïve Bayesian Classifier 
Naïve Bayesian Classifiers are a well-established form of probabilistic classifiers that provide a 

means for binary classification. Naïve Bayesian classifiers are relatively simple to implement and 

the non-parametric form eliminates the computation step required for parameter estimation, 

thereby reducing computational complexity. However, Naïve Bayesian classifiers rely on the 

conditional independence between observed variables, which can hinder the predictive accuracy 

of the model if the data contains cross-correlated variables. In this section, we provide the 

theoretical background for the development of Naïve Bayesian classifiers, and in addition, we 

provide an in depth example concerning the application of Naïve Bayesian classifier on real data, 

in order to evaluate the performance of the model. 

 

Notation Definition 
𝐹 Classification of fraud, 1 for fraud, 0 for healthy.  
𝐵 Categorical variables. 
𝐵G The set features belonging to customer i. 
𝐹G Indicator function (0, 1) that customer i is fraudulent. 
𝑁{ Number of categorical features. 
𝑁G Total number of customers. 
𝑁[^5 Number of fraudulent customers. 
𝑏G Categorical feature, that takes on indicator value 1 if 𝑏G is true and 0 vice-versa. 
𝑁[^V Total number of non-fraudulent customers 
𝑁}\^5
[^5  Total number of fraudulent customers, where the feature value 𝑏G was true. 

𝑁}\^V
[^5  Total number of fraudulent customers, where the feature value 𝑏G was false. 

𝑁}\^V
[^V  Total number of non-fraudulent customers, where the feature value 𝑏G was false. 
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𝑁}\^5
[^V  Total number of non-fraudulent customers, where the feature value 𝑏G was true. 
𝐹 Predicted fraud label of customer via Naïve Bayesian Classifier. 

  
Table 3.2.1 Notation for Naïve Bayesian Classifier. 

3.2.1 Applications of Naïve Bayesian Classifiers 

In the specific context of fraud detection, Naïve Bayes Classifiers were applied in (Viaene, et al., 

2004) to detect insurance claim fraud. (Sahami, et al., 1998) introduces an effective application of 

Naïve Bayesian Classifiers for email spam detection. We follow closely the examples presented 

in (Eberhardt, 2015) which applies the Naïve Bayesian Classifier to detect fraudulent and 

unwanted emails. We repurpose the Naïve Bayesian Classifier for fraud detection on our 

eCommerce platform. Using only the categorical customer registration features 𝑩𝒊 , defined in 

Chapter 2. 

 

In our application of the Naïve Bayesian Classifier, we classify each set of features for each 

customer as belonging to class of fraud (F = 1) or non-fraud (F = 0), limiting our classification 

scope to two classes.  

 

i F b1 b2 b3 b4 b5 
1 0 1 1 0 1 0 
2 1 1 0 0 1 0 
3 0 1 0 0 1 0 
4 0 1 1 0 1 0 
5 0 1 1 1 0 0 
6 0 1 1 0 1 0 
7 0 1 1 0 1 0 
8 0 1 0 0 1 0 
9 0 1 1 1 0 0 

10 0 1 1 0 1 0 
11 0 1 1 1 0 0 
12 0 1 1 1 0 0 
13 1 1 0 0 1 0 
14 0 1 1 0 1 0 

Table 3.2.2 A sample of real categorical data used for Naive Bayesian Fraud Classification. 
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3.2.2 Introduction to Naïve Bayes Classifiers 

The Naïve Bayesian Classifier (NB) is a classification method based on Bayes theorem. Naïve 

Bayesian Classifiers assume that the effect of a feature value on a labelled class is independent of 

the values of the other observed features. This assumption is known as conditional independence 

and is often regarded as a disadvantage of the NB classifier because, in reality, observed features 

are often correlated with one another. To illustrate, we take the probability of events, A, B, and C 

occurring expressed as, 

 

 𝑃 𝐴, 𝐵|𝐶 = 𝑃 𝐴 𝐵 𝑃(𝐵|𝐶) ( 3.2.1 ) 

 

We see that the probability of event A occurring independent of the whether or not B has occurring 

and vice-versa, provided the known state C. This is holds true for any number of events, and is the 

basic assumption of the Naïve Bayesian Classifier. We provide a general extension to categorical 

features, 𝑏G5, … , 𝑏G5, the probability of observing features 𝑏G5, … , 𝑏G5, provided the customer, i, is 

fraudulent, can be expressed as, 

 

 
𝑃 𝑏G5, … , 𝑏GJ 𝐹 = 𝑃(𝑏GJ|𝐹)

]�

J^5

 
( 3.2.2 ) 

 

Where two classes are present F = 1, indicates that the customer is fraudulent, and F = 0 indicate 

that the customer is healthy. Hence, we define the model parameters of a Naïve Bayesian Classifier 

as 𝑃 𝑩𝒊 𝐹  for all B categorical features. We apply this method across the training data, to 

calculate the model parameters. By extension, for observations 𝑩𝒊 = 𝑏G5, … , 𝑏GJ, we say that, for j 

categorical features, the probability of observing the set of features 𝑩𝒊, for customer i, is defined 

as,  

 
𝑃 𝑩𝒊 𝐹 = 𝑃(𝑏GJ|𝐹)

]�

J^5

 
( 3.2.3 ) 
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Therefore, the probability of observing the features 𝑩𝒊  is the summation of the conditional 

probabilities 𝑃 𝑩𝒊 𝐹  multiplied by the prior 𝑃(𝐹), for both fraud classes 𝐹	ϵ	(0, 1). 

 

 𝑃 𝑩𝒊 = 𝑃 𝑩𝒊 𝐹 𝑃(𝐹)
[

 
( 3.2.4 ) 

 

The probability of a customer being fraudulent, after observing features 𝑏G5, … , 𝑏GJ belonging to 

customer i, can be expressed as, 

 

 
𝑃 𝐹 𝑩𝒊 =

𝑃 𝑩𝒊 𝐹 𝑃(𝐹)
𝑃(𝑩𝒊)

 
( 3.2.5 ) 

 

We see that 𝑃(𝑩𝒊)  acts as a normalizing factor as 𝑃 𝐹|𝑩𝒊 	∝ 	𝑃 𝑩𝒊 𝐹 𝑃(𝐹) . Note that the 

normalizing factor is constant, thus it does not need to be recomputed. We predict whether or not 

a customer is fraudulent given its features by finding the classification that maximizes the 

probability of observing the sequence 𝑩𝒊 = 𝑏G5, … , 𝑏GJ, assuming conditional independence across 

all features. We produce a prediction, 𝐹, of whether a customer is fraudulent or not (𝐹 = 0 or 𝐹 =

1), based on finding the class label that provides the maximum likelihood over all possible states. 

 

 
𝐹 = arg	max

[	�	{V,5}
𝑃(𝐹) 𝑃(𝑏GJ|𝐹)

i�

J^5

 
( 3.2.6 ) 

 

The predicted class of each customer’s set of observations 𝑩𝒊 is the label, F, that would provide 

the greatest likelihood provided the observed features 𝑩𝒊	 and model parameters 𝑃(𝑩𝒊|𝐹). We 

provide a method of how to obtain the model parameters 𝑃(𝑩𝒊|𝐹) subsequently in Section 3.2.3. 

 

3.2.3 Parameter Estimation via Maximum Likelihood Estimation 
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In this section, we describe the methodology to estimate the parameters of the Naïve Bayesian 

Classifier, also known as the conditional probabilities and a priori probabilities of the model. We 

define the parameters of the model as,   

 

- 𝑃(𝐹) represents the probability of the fraud class label F (0 for healthy, 1 for fraudulent) 

occurring for the entire population. 

- 𝑃(𝑩𝒊|𝐹) represents the conditional probability of observing the features provided the fraud 

state (F).  

 

Where 𝑩𝒊  is a vector representing a set of features 𝑏GJ for customer i. 

 

 

𝑩𝒊 =

𝑏G5
𝑏GX
⋮
𝑏GJ

 

( 3.2.7 ) 

Therefore, provided label F, each set of observations, 𝑩𝒊 can be expressed as, 

 

 𝑃 𝑩𝒊|𝐹 = 𝑃(𝐹)	 𝑃 𝑏GJ 𝐹
}\� 1 − 𝑃(𝑏GJ|𝐹)

5Q}\�

J

 
( 3.2.8 ) 

 

To calculate the conditional probabilities of each binary variable 𝑏GJ provided class label F, we 

apply the following formulas, 

 

 
𝑃 𝑏GJ = 1 𝐹 = 1 =

𝑁}\�^5
[^5 	
𝑁[^5	

 

𝑃 𝑏GJ = 1 𝐹 = 0 =
𝑁}\�^5
[^V 	
𝑁[^V	

 

𝑃 𝑏GJ = 0 𝐹 = 0 =
𝑁}\�^V
[^V 	
𝑁[^V	

 

( 3.2.9 ) 

( 3.2.10 ) 

( 3.2.11 ) 
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𝑃 𝑏GJ = 1 𝐹 = 0 =
𝑁}\�^5
[^V 	
𝑁[^V	

 
( 3.2.12 ) 

 

Noting that 𝑃 𝑏GJ = 1 𝐹 = 0 = 1 − 𝑃 𝑏GJ = 0 𝐹 = 0  and 𝑃 𝑏GJ = 1 𝐹 = 1 = 1 −

𝑃 𝑏GJ = 0 𝐹 = 1 , we see that the conditional probabilities that maximizes the likelihood in 

Equations ( 3.2.9 ) to ( 3.2.12 ) are exactly the proportion of the customers that have the matching 

𝑏GJ classification, to the proportion of customers with the matching 𝐹 classification. Table 3.2.3 

presents the conditional probabilities computed from the observed data. 

 

Feature 𝑷(𝒃𝒊𝒋 = 𝟏|𝑭 = 𝟏) 𝑷(𝒃𝒊𝒋 = 𝟏|𝑭 = 𝟎) 
𝑏𝑖1 0.78160920 0.99612564 

𝑏𝑖2 0.2011494 0.7964577 

𝑏𝑖3 0.1436782 0.3899267 
𝑏𝑖4 0.8505747 0.5830912 

𝑏𝑖5 0.005747126 0.026982150 
Table 3.2.3 Table of conditional probabilities computed from observed data. 

 

Similarly, to calculate the prior probability of any customer being fraudulent, which is our prior 

probability, we take the proportion of all fraudulent customers to all customers on the platform, 

expressed as, 

 

 
𝑃 𝐹 =

𝑁�
𝑁 =

#	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑓𝑟𝑎𝑢𝑑𝑢𝑙𝑒𝑛𝑡	𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
#	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  

( 3.2.13 ) 

 

Solving for the probability values, we obtain,  

 

A Priori Probability Value 
P(F = 1) 0.04611864 
P(F = 0) 0.95388136 

Figure 3.2.1 Prior probabilities of fraud for all customers. 
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There is roughly a 5% chance that a customer is fraudulent in our dataset, as the majority 95% of 

customers are non-fraudulent.  Provided the conditional probabilities, 𝑃(𝐵G|𝐹), provided in Table 

3.2.3, we can calculate the posterior probabilities 𝑃(𝐹|𝑩𝒊) applying Equation ( 3.2.3 ). 

 

i F b1 b2 b3 b4 b5 P(F=1|Bi) P(F=0|Bi) 𝐹 Result 

1 0 1 1 0 1 0 0.2932 0.7068 0 TN 

2 1 1 0 0 1 0 0.8656 0.1344 1 TP 

3 0 1 0 0 1 0 0.8656 0.1344 1 FP 

4 0 1 1 0 1 0 0.2932 0.7068 0 TN 

5 0 1 1 1 0 0 0.0264 0.9736 0 TN 

6 0 1 1 0 1 0 0.2932 0.7068 0 TN 

7 0 1 1 0 1 0 0.2932 0.7068 0 TN 

8 0 1 0 0 1 0 0.8656 0.1344 1 FP 

9 0 1 1 1 0 0 0.0264 0.9736 0 TN 

10 0 1 1 0 1 0 0.2932 0.7068 0 TN 

11 0 1 1 1 0 0 0.0264 0.9736 0 TN 

12 0 1 1 1 0 0 0.0264 0.9736 0 TN 

13 1 1 0 0 1 0 0.8656 0.1344 1 TP 

14 0 1 1 0 1 0 0.2932 0.7068 0 TN 
Figure 3.2.2 Sample customer feature values and posterior probabilities. 

 

3.2.4 Naïve Bayes Classifier Performance 

Each customer’s features in the testing data is used to predict the customer’s probability of fraud. 

Specifically, for fraud detection, we place importance on the TPR of the model which is the number 

of detected positives or true positives (TP), over the total number of fraud cases (TP + FN). High 

TPR indicates a high detection rate among all cases of fraud, however, our Naïve Bayesian 

Classifier does not produce the high TPR value that we hope to obtain. The FPR value of our 

classifier, which is the proportion of true fraud among all detected cases fraud, is also significantly 

high. 
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Model Performance Count 
TP 70 
TN 1763 
FP 409 
FN 31 
FPR 0.1883057 
TPR 0.6930693 

Figure 3.2.3 Model performance metrics for Naive Bayesian Classifier. 

As evidenced, the Naïve Bayesian Classifier performs poorly at obtaining high values of TPR or 

recall, though it does obtain satisfactory levels of precision (higher precision indicates lower FPR). 

The example presented in this Section provide a strong motivation to develop a more accurate, and 

robust classifier that produces higher recall values for the purpose of fraud detection. 

 

3.3 Decision Trees & Random Forest 
Decision trees are classification algorithms that provide more flexibility for classification on 

complex non-linear systems over than parametric models such as regression. Decision Trees are 

intuitive in nature, and easily interpretable to the general public. Tree based algorithms typically 

scale well in terms of computational complexity, and are simple to visualize. Unlike regression 

based methods, there is no need to create dummy variables, as they can easily handle categorical 

data. However, a downside to decision tree methods is that they are very sample dependent and 

prone to overfitting. This problem can be mitigated by ensemble learning methods such as the 

Random Forest algorithm. The application of Random Forest, has been applied to detect online 

retail fraud in (Altendorf, et al., 2005). 

 

In this section, we introduce the theory and application of the decision tree algorithm, proposed by 

(Quinlan, 1986), and subsequently provide a basic example of how to build a decision tree from 

categorical and numerical features in our database. Secondly, we follow closely the model applied 

in (Altendorf, et al., 2005) to develop a system to detect fraud using the Random Forests algorithm, 

introduced by (Breiman, 2001), on our data set. 

 

Notation Definition 
𝑆 Split data; data incoming to a decision tree node, and classified in to one of two 

binary values.  
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𝑆�,J Split at node q on feature j.  
𝐹 True fraud label. 
𝐹 Predicted fraud label. 
𝛽 Entropy gain threshold. 

H(S) Entropy of the split, S. 
𝑃J Probability of S being classified as value f (fraud class = 0 , 1).  
y Fraud label (0, 1) 
y` Predicted fraud label (0, 1) 
q Node number 
𝑛� Number of observations at with fraud class f. 
j Feature index. 

Table 3.3.1 Decision Tree notation. 

3.3.1 Decision Tree 

First introduced in (Quinlan, 1986), decision trees are predictive models which map observations 

through a flow-chart like structure, splitting the incoming features at each intermediate node of the 

tree. Each node receives an incoming input, and outputs a label based on the feature values. 

Decision trees can be applied for classification purposes, or regression purposes. For categorical 

classification, each node is classified with regard to the node’s feature value. For numerical 

variables, an optimal split based on information entropy, divides the incoming observation into 

sub-classes. In the context of decision trees, we define the following three types of nodes, 

 

Node Type Definition 
Root Node The top-most initial node consisting of no incoming edges and two 

outgoing edges. 
Internal Node All of the intermediate nodes, consisting of one incoming node and two 

outgoing nodes. 
Terminal Node The bottom most node of the decision tree consisting of one incoming 

node and the classification output. 
Table 3.3.2 Decision tree node types. 

In a decision tree, each terminal node is assigned a class label, in our case (0 for healthy, and 1 for 

fraud). The non-terminal nodes, which include the root and other internal nodes, contain attribute 

test conditions to separate records that have different characteristics.  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Figure 3.3.1 An example of how a fraud classification decision tree would look like. 

In Figure 3.3.1, we construct an example classification tree using one categorical feature, b1, and 

one numerical feature, v9, applying the CART (Classification and Regression Tree) algorithm, 

introduced in (Breiman, 1984). The CART algorithm splits the data at each node into only two 

branches only. This prevents the decision tree from overfitting by limiting the number of discrete 

features each split can be classified as. From this diagram, we note that both categorical features 

and binary features can be repeatedly split multiple times. To decide on which feature to split on, 

and at which level, we must find the feature that minimizes the impurity of the split. The measure 

of impurity, which we define as information entropy, refers to the level of ambiguity at each node, 

q, after the split S, on feature j, which we denote as 𝑆�,J. Information entropy measures the purity 

of the outcome of each decision tree. The concept of entropy, 𝐻(𝑆�,J), is defined as,  

 

 𝐻(𝑆�,J) = − 𝑃J logX 𝑃J
J

 
( 3.3.1 ) 
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Where 𝐻(𝑆�,J) is the entropy of the data, provided split data 𝑆. We define the split S as all the 

incoming data. Each data point can take a numerical value, or categorical value. For numerical 

values, a split value is defined, and the incoming data is partitioned at the corresponding split 

value. For example, if the split value is determined to be 5.6, then all data points greater than 5.6 

will fall into one class, and all data less than or equal to 5.6 will fall into another class. 𝑃J denotes 

the probability of obtaining value 𝐹 ∈ (0,1) at split S. This probability 𝑃J can be represented as 

the number of data points classified as fraudulent or non-fraudulent (0, 1) at any given node, we 

use 𝑛� to denote this number.  For example, at node 2, 

 

Feature 𝑛� 𝑃J 
b1 > 0 75 0.01389403 

b1 <= 0 5398 0.986106 
Table 3.3.3 Split on feature b1. 

We see that of the S pertaining to b1, of the 53985 incoming observations, 75 were labelled as 

fraud (1) and 5323 were classified as non-fraud (0), of the two possible classes. Therefore, at that 

node, we compute entropy as, 

 

 
𝐻 𝑆X,}� = −

75
5398 logX

75
5398 −

5323
5398 logX

5323
5398 = 0.1056226 

( 3.3.2 ) 

 

For categorical variables, a split is set at a threshold value and the incoming data is split into 

partitions based on whether the value exceeds or falls below a set threshold accordingly. For 

example,  

 

Feature 𝒏𝒊 𝒑𝒊 
v9 <= 5000 42 0.6268657 
v9 > 5000 25 0.3731343 

Table 3.3.4 Split on feature v9. 

 

 
𝐻 𝑆5n,¢£ = −

42
67 logX

42
67 −

25
67 logX

25
67 = 0.8732 

( 3.3.3 ) 
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When training decision trees, the objective is to find the split that will produce the maximum 

entropy. We define the concept of information gain as, 

 

 
∇ 𝑆�,J ≝ 𝐻 𝑆�,J¥ −

𝑁 𝑆J
𝑁 𝐻(𝑆J)

J

 
( 3.3.4 ) 

 

We define the information entropy gain ∇ 𝑆�J  of incoming data S at node q, and feature j. 

𝐻 𝑆�,J¥  which is the entropy at node q which was previously split on feature 𝑗¦, calculated by 

Equation ( 3.3.1 ). 𝑆J represents the data at outgoing nodes on feature j (for binary splitting j can 

take on two values). 𝑁 𝑆J  represents the number of values at node 𝑆J after the split has been made, 

and N represents the total number of data points incoming from node 𝑆�,J¥, where N S© /𝑁 is the 

fraction of the number of data points split at feature 𝑆J to the total amount of data at node incoming 

node 𝑆�,J¥.  

 

For all features, we find the maximum entropy gain at each node by iterating over features j. Since 

all of our categorical features are split in a binary manner (0, 1), the split on categorical features is 

predefined. For numerical features, it is necessary to iterate through multiple discrete values of the 

feature find the split value that produces the highest information entropy. Subsequently, we 

compute the entropy gain ∇ 𝑆GJ . An example of this is the split on feature v9 in Figure 3.3.1. 

Furthermore, we see that the categorical variable is split at b1, and subsequently the node is further 

split by numerical value v9. Thus it is possible for a single feature, such as v9 to be split multiple 

times to compute the predicted value. Evidently, it is possible for the decision tree to continue 

branching incessantly for decreasing entropy gains ∇ 𝑆�,J¥ , therefore we impose a stopping 

condition for the feature splitting process. The stopping condition is the case when the maximum 

entropy gain ∇ 𝑆  of the model is less than a defined threshold 𝛽. 

 

 𝑀𝑎𝑥 ∇ 𝑆�,J¥ ≤ 𝛽 ( 3.3.5 ) 
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3.3.2 Application of Decision Trees 

We fit a decision tree on the categorical, b, and numerical, v, variables in the training set. We 

produce results, where F is the actual fraud label, and 𝐹 is the forecasted fraud label via decision 

tree prediction. We display a sample of the predictions results against both binary (categorical) b 

type, and numerical v type features. There is a combined total of 5 categorical variables, and 9 

numerical variables. We fit a single CART decision tree to the model, consisting of 37 nodes with 

binary splits, on 5681 customer centric features, which is 75% of the selected data. For validation 

and model performance, we use the remaining 25% of the data set, denoted as the validation set. 

We present a sample of the raw data with corresponding response values y, and predicted response 

values 𝐹, below, 

 

i b1 b2 b3 b4 b5 F 𝐹 

1 1 1 0 1 0 0 0 
7 1 1 0 1 0 0 0 
8 1 1 0 1 0 0 0 
9 1 1 0 1 0 0 0 
11 1 0 0 1 0 0 0 
15 1 1 1 0 0 0 0 
18 1 1 1 0 0 0 0 
19 1 0 0 1 0 0 0 
21 1 0 0 1 0 0 0 
24 1 1 1 0 0 0 0 
25 1 1 0 1 0 0 0 
31 1 0 0 1 0 1 1 
32 1 1 0 1 0 0 0 
33 1 1 1 0 0 0 0 
37 0 0 1 0 0 1 1 

Figure 3.3.2 Categorical binary feature sample values. 

 

i v1 v2 v3 v4 v5 v6 v7 v8 v9 F 𝐹 
1 1145000 36 274350.8571 2 31805.55556 693 37 265302.1389 18.72972973 0 0 

7 12998000 23 484797.2727 6 565130.4348 8000 8 1147244.286 1000 0 0 

8 1066000 14 897189.2308 2 76142.85714 52 12 1060644.364 4.333333333 0 0 



  

42 

 

 

9 62669000 44 284641.3953 8 1424295.455 22806 32 401035.8387 712.6875 0 0 

11 1490000 5 44745 2 298000 4200 13 100253.5 323.0769231 0 0 

15 7429000 10 1331926.667 5 742900 58 2 1732510 29 0 0 

18 9665000 38 308130.8108 6 254342.1053 3096 42 248057 73.71428571 0 0 

19 2853000 31 418976 3 92032.25806 356 6 1311991.6 59.33333333 0 0 

21 5495000 35 97775.29412 7 157000 60 2 422308 30 0 0 

24 18334000 51 247200 10 359490.1961 7521 67 191193.4091 112.2537313 0 0 

25 1134000 11 922326 5 103090.9091 2107 5 1361338.75 421.4 0 0 

31 68691000 36 74201.14286 3 1908083.333 70414 33 139415.4063 2133.757576 1 1 

32 1306000 13 843800 8 100461.5385 10 2 857324 5 0 0 

33 385000 8 989314.2857 5 48125 80 4 665029.6667 20 0 0 

37 2369000 5 1179675 3 473800 85 6 997568.6 14.16666667 1 1 

Figure 3.3.3 Numerical feature values and response values. 

We provide measures of model performance, 

 

Model Performance Count 
TP (True Positives) 85 
TN (True Negatives) 2081 
FP (False Positives) 91 
FN (False Negatives) 16 
FPR (False Positive Rate) 0.04189687 
TPR (True Positive Rate) 0.8415842 

Figure 3.3.4 Decision tree model performance parameters. 

 

It is evident that the application of a decision tree, with additional numerical features, greatly 

increases the detection rate of the fraud predictor, when compared to the Naïve Bayesian Classifier 

mentioned earlier in Section 3.2, however, the decision tree model produces a lower TPR when 

compared to the logistic regression model presented in Section 3.1. 

 

3.4 Random Forest Classifier 
The Random Forest classifier is an extension to the decision tree algorithm, where a collection of 

trees are utilized to generate a result by taking an average of the results as the final result. Various 

benchmark studies have indicated that random forests can attain strong performance in terms of 

predictive power. Random forests have been applied to a wide range of applications, from machine 
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fault detection (Han & Lee, 2006), financial banking fraud (Liu, et al., 2015), to online retail fraud 

(Altendorf, et al., 2005). In each use case, random forests have shown excellent performance for 

robust classification purposes, mitigating the results of overfitting and cross-correlation. Random 

forests have also shown to have strong predictive capability in small data sets.  

 

Notation Definition 
m Feature sample parameter. 
T Number of decision trees in the Random Forest. 
d Max depth of each decision tree. 
n Feature sample parameter 
𝑦H¦ Predicted response of the tth tree. 

Table 3.4.1 Random forests notation. 

 

3.4.1 Random Forests Algorithm 

The Random Forest algorithm is an ensemble model. It combines the outputs of several weaker 

models to generate a more robust prediction. Therefore, instead of generating one decision tree 

from all of the features, we build T smaller decision trees using only a maximum of m out of j total 

features. Each small tree, t of T builds a model on n out of N observations form the training set. 

We formally state the Random Forests algorithm as, 

 

Random Forest Algorithm 

1. For each tree t = 1,…,T 

a. Sample with replacement n observations from the training set. 

b. Select m of j total features 

c. Perform the decision tree generation algorithm presented in Section 3.3.2, with a 

maximum tree depth stopping condition of d5. 

2. Proceed to the prediction step. 

                                                

 
5 The maximum stopping condition is used to prevent memory overflow if the decision tree 

becomes too large. Ideally, the decision tree is grown until the entropy gain is below 𝛽. 
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Table 3.4.2 Random Forest Algorithm outline. 

The prediction step involves generating a prediction from the average value of the prediction out 

of T trees of the random forest. Where the prediction R(F) is, 

 

 
𝑅 𝐹 =

1
𝑇 𝑦H¦

­

H^5

 
( 3.4.1 ) 

 

Where 𝑦H¦ is the predicted response of the tth tree in the Random Forest. The output of the Random 

Forest algorithm is essentially the average output among all of the outputs of the trees contained 

within the random forest. For categorical prediction, we set a threshold of 0.4 (to obtain an FPR 

of under 0.05), where, 

 

 𝑅 𝐹 > 0.4 → 𝐹 = 1 ( 3.4.2 ) 

 𝑅 𝐹 ≤ 0.4 → 𝐹 = 0 ( 3.4.3 ) 

Equations ( 3.4.2 ) and ( 3.4.3 ) express the predicted fraud of each customer’s observation as a 

majority vote among T trees of the random forest. Table 3.4.3 conveys the selection of model 

parameters, m and T. 

 

Model Parameters Value 
m 4 
T 500 

Table 3.4.3 Random forest model parameters, 

We present the classification results of this model, 

 

Model Performance Count 
TP (True Positives) 94 
TN (True Negatives) 2081 
FP (False Positives) 91 
FN (False Negatives) 7 
FPR (False Positive Rate) 0.04189687 
TPR (True Positive Rate) 0.9306931 

Table 3.4.4 Random forest model performance. 
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The model performance is drastically improved using the Random Forest method. Using 500 

smaller decision trees, with observations constantly sampled with replacement6 from the training 

data set using a subset of the features m, we create a much more robust classifier that greatly 

reduces bias towards any specific feature. 

  

3.5 Model Comparison 
In this section we compare the performance of the 5 classifiers, which we refer to as aggregate 

feature classifiers, due to the fact that the features are aggregate over the entire lifespan of the 

customer.  

 

Model Identifier Model Name 

LR1 Logistic Regression on Customer Registration Features 

LR2 Logistic Regression on All Available Features 

NB1 Naïve Bayesian Classifier on Customer Registration Features 

DT1 Decision Tree on All Available Features 

RF1 Random Forest on All Available Features 

 

We compare the performance of multiple models by examining the classification accuracy of each 

algorithm as measured by the detection rate, which is constrained by the FPR. We also examine 

the behaviour of the classifier based as the overall shape of the ROC, refer to figure Figure 3.5.1. 

Inevitably, classifiers which make use of both registration (categorical) and numeric features 

perform better than classifiers which only use registration features (i.e. LR1 and NB1). 

 

Though a single decision tree, as represented by model DT1, is prone to deficiencies such as 

variable bias and overfitting. RF1 provides best detection rate among all classifiers presented in 

                                                

 
6   Sampling with replacement is also known as ‘bootstrap’ sampling in machine learning 

terminology. 
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this section. The Random Forest model serves as a major improvement to a single decision tree, 

and is evidently able to produce a better detection rate for cases of fraud. 

 

When applied without additional higher order interaction terms, Logistic Regression, represented 

by LR2 & LR1, can be hindered by multicollinearity as it does not consider any complex variable 

interactions. However, adding in higher order interaction terms greatly increases the complexity 

of the model. LR2 considers all variables to be independent of one another, whereas RF1 is capable 

of reducing correlation of variables via its robust sampling mechanism. LR2 does exhibit a 

relatively sufficient detection rate despite the assumption that all variables are independent. 

 

LR2 exhibits similar ROC behaviour to RF1, although RF1 produces better accuracy provided the 

0.05 maximum FPR constraint, the variation is not drastic across the entire curve, and in fact, there 

are some instances where LR2 will outperform RF1 provided different FPR constraint. Because 

Logistic Regression can be expressed in parametric form, it is simpler to deploy across complex 

systems. We propose that both RF1 and LR2 can be used interchangeably as aggregate feature 

classifiers. Though RF1 is preferred due to its stronger accuracy, LR2 is less complex to implement 

and deploy across a real-time system. 
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Figure 3.5.1 ROC comparison of various classifiers. 

 

 

 

 

 

 

 

 

 

 



  

48 

 

 

Chapter 4. Hidden Markov Modelling 
Discrete time Hidden Markov Models (HMM) are stochastic models which have a wide range of 

applications for modeling stochastic processes in various industries. Discrete time HMM’s are 

ideal for modeling discrete auto-correlated processes, where the observed variables depend on a 

hidden state. The hidden states are unobservable, and obey the Markov property, indicating that 

the conditional probability of future states depends only on the present state. The observable 

symbols at the current time epoch, t, are conditionally dependent only on the hidden state at the 

time t. The purpose of this chapter is to further outline the theoretical details of HMM’s. From an 

application standpoint, HMM’s have been applied in industry to many practical use-cases, from 

speech recognition (Rabiner & Juang, 1986) to image analysis (Choi, et al., 2000). The wide 

application of stochastic process modelling can be found in (Zucchini & MacDonald, 2009), which 

illustrates many use cases of Hidden Markov Modelling, including crime rate modeling and DNA 

sequencing.  

 

In this thesis, we refer to non-fraudulent customers as healthy customers. If an incoming 

transaction is not accepted by the classification algorithm, the transaction is deemed fraudulent, 

and so is the customer associated with that transaction. The customer responsible for the 

transaction is subsequently subject to human review from a fraud review team, to confirm if that 

customer is fraudulent. Consequently, that customer is terminated from making further 

transactions. Therefore, it is critical to ensure that the false positive rate (FPR) remains below a 

certain threshold (in this project we stipulate a maximum FPR of 5%), so that minimal effort is 

expended in correcting misclassified fraudulent customers. 

 

4.1.1 Motivation and Application 

The application of HMM’s specifically for the application of fraud detection is presented in both 

(Srivastava, et al., 2008) and (Dhok & Bamnote, 2012), which we base our methodology from. 

First, a reference model is constructed using data from regular, non-fraudulent, customers. And 

subsequently, this model is compared against transactions generated from both healthy and 

fraudulent customers to determine the TPR against the FPR of the algorithm. Both (Srivastava, et 
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al., 2008) and (Dhok & Bamnote, 2012) illustrate that for purposes of credit card fraud detection, 

HMM’s produce a high detection rate combined with a low false positive rate. However, (Raj & 

Portia, 2011) presents a comparative study considering the application of HMM and other methods 

of classification, claiming that the application (Netzer, et al., 2008)of HMM to fraud detection 

instead produces a high false positive rate, and is relatively ineffective. In our research, we seek to 

further investigate the application of HMM to effectively detect the occurrence of fraud 

specifically on eCommerce networks. Our application differs slightly from credit card fraud 

detection specifically because although the majority of eCommerce transactions are credit card 

based, such credit card transactions occur entirely online. However, the principles of financial 

transaction-based stochastic modelling remain the same.  

 

We refer to the models previously developed in Chapter 3 as aggregate feature classification 

models, provided that they require an aggregate of all time series observations over a customer’s 

lifetime to generate a single feature. There are two major set-backs with this approach. Firstly, 

such models do not consider the dynamic time-variant behaviour of customers. Secondly, such 

models fail to detect anomalous behaviour until the cost incurred by such behaviour becomes 

overwhelmingly detrimental. This motivates the development of a model which provides 

consideration for the dynamic behaviour of healthy customers, and provides a signal for early 

action if an anomaly spending pattern is detected.  

 

This chapter details the methodology of constructing an HMM from the observed data belonging 

to healthy customers only, we refer to this as the reference model. The reference model is 

subsequently used to generate a probability of observing a sequence produced by each respective 

customer. We update a new observation symbol to a customer’s sequence at every 12-hour 

interval. With each additional observation, an HMM-based fraud detection algorithm used to 

determine if the customer is fraudulent, this will be further elaborated in Chapter 5. The periodic 

update allows for early detection of fraudulent behaviour. Furthermore, HMM’s provide the ability 

to forecast the behavioral state of each customer into the future. For example, (Netzer, et al., 2008) 

applies the use of HMM’s to model customer behavior, providing a framework for customer-

relation-management (CRM). Though this additional benefit is not specifically addressed in our 
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research, the HMM’s capability for generating forecasts should be noted as an advantage over 

aggregated models. In our application, we choose to develop the HMM for the specific purpose of 

fraud detection on financial transactions for eCommerce platforms, by setting the hidden states to 

describe the spending behaviour of each healthy customer, and calculating the acceptance 

probabilities of each customer based on the observation symbols. 

 

The HMM considers both the dynamic time-variant behaviour of customers and is capable of 

providing a signal for early preventive action. In addition, the HMM also outlines solid statistical 

foundation for the understanding of customer behaviour as the structure of the HMM represents 

the real spending behaviour of customers on the eCommerce platform. The Markov property of 

the hidden state in an HMM accounts for the auto-correlated behaviour of customer spending. 

Since the social-economic factors that contribute to the amount of spending produced by a 

customer are not directly observable to the eCommerce service, it is ideal to use a hidden state to 

model this process. The hidden state represents the true nature of the customer at time t, and 

consequently affects the actual spending of the customer, represented by the observation symbols 

of the HMM at time t. The main concept behind the HMM is to assign a probability to the 

observation symbol sequence, and determine how likely the aforementioned sequence is 

representative of a healthy customer. 
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4.2 Hidden Markov Model (HMM) 
Notation Definition 

𝑆H Hidden state at time t. 
𝜃 Parameters of the HMM. 
𝑐 Customer index. 
𝑂H Emitted observation symbol at time t. 
𝑂5:­°
(O)  Observation symbols from 𝑡 = 1 to 𝑡 = 𝑇O for customer c. 
𝑖 Value of hidden state. 
𝑗 Value of hidden state. 
𝑄′ Set of all permutations of sequence {𝑆5, 𝑆X, … , 𝑆­}. 
𝑁 Total number of hidden states 𝑆H. 
𝐶 Total number of customers (or observation sequences). 
𝑀 Total number of observation symbols 𝑂H. 

𝑄 = {1,2, … , 𝑁} Set of all possible hidden states. 
𝑉 = {𝑣5, 𝑣X, … , 𝑣s} Set of all possible observation symbols. 

𝛼H 𝑗  Forward probability at time t. 
𝛽H 𝑗  Backward probability at time t. 
ζ¶ 𝑖, 𝑗  Joint probability of being in state i at time t, to being in state j time t 

+1, provided the observation sequence. 
𝐴 = {𝑎GJ} Transition matrix A, representing transition probability from hidden 

state i to j. 
𝐵 = {𝑏J(𝑣·)} Emission probability of observation symbol probability, 𝑣·, at 

hidden state j. 
𝜋 = {𝜋G} Initial state probability distribution of state i.  
𝐴′ = {𝑎GJ} Transition matrix representing transition probability from hidden 

state i to j for all C customers. 
𝐵′ = {𝑏J(𝑣·)} Observation symbol probability at hidden state j for all C 

customers. 
𝜋′(𝑖) Initial probability distribution matrix generated from multiple 

sequences for all C customers. 
𝑇O Final time epoch for customer c. 
𝑶 Set of all observation sequences. 
𝑛 Iteration number of the Baum – Welch Algorithm. 

Table 4.2.1 Hidden Markov Model notation. 

4.2.1 HMM Model Structure 

Hidden Markov Models constitute an extension to the Markov model, where the observed 

variables are dependent on both an underlying hidden state, and the preceding hidden state. The 

hidden states of an HMM follow a multi-state Markov property. We denote the hidden state at time 

t, 𝑆H, as a condition representing spending behaviour of the customer. 
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 𝑃 𝑆Hj5 𝑆5, … , 𝑆H = 𝑃 𝑆Hj5 𝑆H  ( 4.2.1 ) 

 

We refer to 𝑃(𝑆Hj5|𝑆H) as the transition probability of the hidden state. At each time epoch t, the 

arrival of a new observation occurs. Provided N hidden states, the HMM can be expressed as a 

sequential state process, where the hidden state sequence constitutes a Markov process.  

 

 
Figure 4.2.1 Structure of an HMM, displaying the hidden state S and observed variable y. 

To begin with, we examine the observation sequence pertaining to one customer, c, specifically. 

We refer to 𝑂5:­ as a single observation sequence. The Hidden Markov model is constructed from 

three parameters, denoted as 𝜃 = (𝐴, 𝐵, 𝜋). Where 𝜋 𝜃  is the initial N x 1 probability matrix, for 

N hidden states. We see that, 𝜋G = 𝑃(𝑆5 = 𝑖), for 𝑖 from 1 to N. 

 

 
𝜋 𝜃 =

𝜋5	
⋮
𝜋]

 
( 4.2.2 ) 

By convention, we define at time t,  

 

 𝑆H = 𝑖 ( 4.2.3 ) 

And, 
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 𝑆Hj5 = 𝑗 ( 4.2.4 ) 

 

Where the hidden state corresponding to j is always one time epoch ahead of i. 𝐴O = {𝑎GJ} is the 

transition matrix for observation sequence 𝑂5:­ , that defines the transition probabilities from 

hidden states 𝑖  to 𝑗 , where, 𝑎GJ = 𝑃(𝑆Hj5 = 𝑗|𝑆H = 𝑖) . We can summarize the transition 

probabilities conveniently as an N x N matrix 𝐴. 

 

 
𝐴 =

𝑎55 … 𝑎5]
⋮ ⋱ ⋮
𝑎]5 … 𝑎]]

 
( 4.2.5 ) 

 

And 𝐵 = {𝑏G(𝑣·)}  represents the emission probability matrix for observation sequence 𝑂5:­ . 

Where 𝑏G(𝑣·) = 𝑃(𝑂H = 𝑣·|𝑆H = 𝑖) , for N hidden states, and M observation symbols. We 

summarize this as the N x M emission probability matrix 𝐵. 

 

 
𝐵O =

𝑏5(𝑣5) … 𝑏5(𝑣s)
⋮ ⋱ ⋮

𝑏](𝑣5) … 𝑏](𝑣s)
 

( 4.2.6 ) 

 

In our HMM, we impose a model where the set of all possible observation symbols and hidden 

states are identical for all independent observation sequences, 𝑂5:­. We specify M = 4 observation 

symbols and N = 3 hidden states, this will be further discussed in Chapter 5. 

 

4.2.2 HMM Parameter Estimation 

The estimation procedure of the HMM consists of three key problems which must be resolved in 

order to obtain the parameters of the model (Rabiner & Juang, 1986).  

 

1. Evaluation Problem – Provided parameters 𝜃 = (𝐴, 𝐵, 𝜋) , how do we compute the 

maximum probability of the observation sequence 𝑃(𝑂5:­|𝜃)? 

2. Expectation Problem – Selecting an optimal hidden state sequence, 𝑆5:­, according to some 

meaningful metric, provided 𝜃. 
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3. Maximization Problem – How to maximize the probability of the sequence 𝑆5:­°  by 

adjusting parameters 𝜃 = (𝐴, 𝐵, 𝜋). 

 

We propose the solution to these fundamental problems by presenting the forward and backward 

algorithms, along with the Baum-Welch Algorithm, presented subsequently in this chapter. 

 

4.3 Forward-Backward Algorithm 
Naively, we can compute the evaluation problem by summing over all of the combinations 

constituting the hidden state sequence. We express this as, 

 

 𝑃 𝑂5:­ 𝜃 = 	 𝜋º�𝑏º� 𝑂5 𝑎º�º»𝑏º» 𝑂X …𝑎º¼½�º¼𝑏º¼ 𝑂­
º�,º»,…º¼ 	�	¾¥

 
( 4.3.1 ) 

 

Where 𝑄′ denotes all permutations of the sequence of hidden states {𝑆5, 𝑆X, … , 𝑆­}. We can see 

that computing 𝑃 𝑂5:­ 𝜃  in this manner requires heavy computation, as the number of 

permutations of 𝑄′ will be on the order of 2𝑇𝑁­. To reduce the computational complexity using a 

dynamic programming approach, we introduce the forward and the backward algorithms. 

 

4.3.1 Forward Algorithm 

The forward algorithm involves the calculation of the joint probability of being in state  𝑆H , 

provided all of the observation symbols up until time t, denoted as 𝑂5:H.  We define 𝑆HQ5 = 𝑖 and 

𝑆H = 𝑗 , with state j conditionally dependent on i. Provided the information about the entire 

observation sequence, 𝑂5:H. We express 𝛼H 𝑗  as, 

 

 𝛼H 𝑗 = 𝑃 𝑆H = 𝑗, 𝑂5:H 	

𝛼H 𝑗 = 𝑃(𝑆H = 𝑗, 𝑆HQ5 = 𝑖, 𝑂5:H)
]

¿^5

			 

( 4.3.2 ) 

 

Due to conditional independence, we can simplify the expression to, 
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𝛼H 𝑗 = 𝑃 𝑂H 𝑆H = 𝑗 𝑃(𝑆H = 𝑗|𝑆HQ5 = 𝑖, 𝑂5:HQ5)

]

G^5

 

𝛼H 𝑗 = 𝑃 𝑂H 𝑆H = 𝑗 𝑃 𝑆H = 𝑗 𝑆HQ5 = 𝑖 𝑃(𝑆HQ5 = 𝑖, 𝑂5:HQ5)
]

G^5

 

( 4.3.3 ) 

 

The forward algorithm allows us to apply recursion to compute, at each step, the current value 

recursively utilizing the forward probability from the previous time epoch.  

 
Figure 4.3.1 An illustration of the states involved in calculating the forward probability. 

The forward algorithm can be applied recursively as,  

 

 
𝛼H 𝑗 = 	 𝛼HQ5 𝑖 𝑎GJ

]

G^5

𝑏J(𝑂H) 
( 4.3.4 ) 

 

For purposes of initialization, we compute, 

 

 𝛼5 𝑗 = 	𝑃 𝑆5 = 𝑗, 𝑂5 = 𝑏J 𝑂5 𝜋J ( 4.3.5 ) 

And 𝑃 𝑂5:­ 𝜃  simplifies to, 
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𝑃 𝑂5:­ 𝜃 = 𝑃(𝑂5:­, 𝑆­ = 𝑖)

]

G^5

= 𝛼­ 𝑖
]

G^5

 

 

( 4.3.6 ) 

Applying the forward algorithm to calculate 𝑃 𝑂5:­ 𝜃  reduces the time of computation for 

𝑃 𝑂5:­ 𝜃  from 2𝑇𝑁­  to 𝑁X𝑇 (Rabiner & Juang, 1986), allowing for a more computationally 

efficient calculation of the observation sequence probability at any time t. 

 

4.3.2 Backward Algorithm 

We define the backward probability as the probability of observing future observations from time 

t + 1 to time T, denoted as 𝑂Hj5:­, conditional upon knowing 𝑆H. By convention we define 𝑖 = 𝑆H 

and 𝑗 = 𝑆Hj5. 

 

 𝛽H 𝑖 = 𝑃 𝑂Hj5:­|𝑆H = 𝑖 	

𝛽H 𝑖 = 	 𝑃 𝑂Hj5:­, 𝑆Hj5 = 𝑗|𝑆H = 𝑖
]

J^5

	

𝛽H 𝑖 = 	 𝑃 𝑂HjX:­|𝑆Hj5 = 𝑗 𝑃 𝑂Hj5 𝑆Hj5 = 𝑗 𝑃(𝑆Hj5 = 𝑗|𝑆H = 𝑖)
]

J^5

 

( 4.3.7 ) 

 

Where the backward probability of 𝛽H 𝑖  is equivalent to the marginal sum over all possible states 

𝑆Hj5 = 𝑗 , multipled by its transition probability, its emission probability, and the backward 

probability 𝛽Hj5 𝑗 . 
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Figure 4.3.2 An illustration of all the observations and states involved in computing the backward probability. 

We express 𝛽H 𝑖  recursively, with reference to the emission matrix 𝑏J(𝑂H) and transition matrix 

𝑎GJ probabilities as, 

 

 
𝛽H 𝑖 = 	 𝛽Hj5 𝑗 𝑏J(𝑂Hj5)𝑎GJ

]

J^5

 
( 4.3.8 ) 

 

In order to be able to compute 𝑃 𝑂5:H 𝜃  for any t, we impose the final end condition for Tc, where, 

 

 𝛽­ 𝑖 = 1 ( 4.3.9 ) 

 

4.3.3 Forward-Backward Algorithm 

 

The Forward-Backward (FB) Algorithm provides a means of inferring, from an observation 

symbol sequence, of being in state St at time t, provided the full sequential observations up to time 

T, represented by 𝑂5:­ = (𝑂5, 𝑂X, …𝑂­).  The FB algorithm calculates the complete probability 

over the entire sequence as the product of the forward and backward algorithms at time t. 

Combining both the forward and backward algorithms, we can express the joint probability of the 

hidden state at time t, denoted by 𝑆H, in terms of the forward and backward probabilities. 

 

 𝛼H 𝑖 𝛽H(𝑖) = 𝑃(𝑆H = 𝑖, 𝑂5:­)	 ( 4.3.10 ) 

We can denote the conditional probability of 𝑆H being in hidden state i as, 

 

 𝛾H(𝑖) = 𝑃(𝑆H = 𝑖|𝑂5:­) ( 4.3.11 ) 

 

We express 𝛾H(𝑖) as the joint probability of being in state 𝑖 and observing 𝑂5:­ while at time t, 

divided by the probability of observing the sequence 𝑂5:­. 
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𝛾H(𝑖) =

𝑃(𝑆H = 𝑖, 𝑂5:­)
𝑃(𝑂5:­)

 
( 4.3.12 ) 

 

Which can be expressed as the probability of i, divided by the marginal probability across all N 

possible hidden states 𝑞¿. 

 

 
𝛾H(𝑖) =

𝛼H 𝑖 𝛽H(𝑖)
𝛼H 𝑖 𝛽H(𝑖)]

G^5
 

( 4.3.13 ) 

 

The forward-backward algorithm reduces the complexity of computing the conditional probability 

of being in state i at time t provided the full observation sequence 𝑂5:­° . 

 

4.3.4 Baum-Welch Algorithm 

The Baum-Welch algorithm, developed by (Baum & Welch, 1966), is an application of the 

Expectation Maximization (EM) algorithm to estimate the transition and emission probabilities 

denoted by matrices A and B respectively (a more detailed description of the EM algorithm can be 

found in the Appendix). The EM algorithm presents an iterative solution to calculate expectation 

and maximization steps of HMM parameter estimation. We denote the transition from hidden state 

i to state j at time t as, 𝜁H 𝑖, 𝑗 , 

 

 𝜁H 𝑖, 𝑗 = 𝑃(𝑆H = 𝑖, 𝑆Hj5 = 𝑗|𝑂5:­) ( 4.3.14 ) 

 

We express  𝜁H 𝑖, 𝑗  as, 

 

 
𝜁H 𝑖, 𝑗 =

𝛼H 𝑖 𝑃 𝑆Hj5 = 𝑗 𝑆H = 𝑖 𝑃 𝑂Hj5 𝑆Hj5 = 𝑗 𝛽Hj5(𝑗)
𝑃(𝑂5:­)

 
( 4.3.15 ) 

 

Where 𝑃 𝑂5:­°  is the sum of the marginal probabilities across hidden states i and j, 
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 𝑃 𝑂5:­ = 𝛼H 𝑖 𝑃 𝑆𝑡+1 = 𝑗 𝑆𝑡 = 𝑖 𝑃 𝑂Hj5 𝑆𝑡+1 = 𝑗 𝛽Hj5(𝑗)
]

J^5

]

G^5
 

( 4.3.16 ) 

 

Subsequently, denoting 𝑎GJ  as the transition matrix probability, and 𝑏J(𝑆Hj5)  as the emission 

matrix probability, 𝜁H 𝑖, 𝑗 	becomes, 

 

 
𝜁H 𝑖, 𝑗 =

𝛼H 𝑖 𝑎GJ𝑏J(𝑆Hj5)𝛽Hj5(𝑗)
𝑃(𝑂5:­)

 
( 4.3.17 ) 

 

4.4 Single Sequence Parameter Estimation 
We consider the scenario where we have one sequence of observations from times 1 to 𝑇O. At each 

step n, we compute the parameters of the HMM, 𝜃 i = (𝜋(i), 𝐴 i , 𝐵(i)). For the first iteration n 

= 0, we build a random set of parameters for 𝜃(V), and update the parameters at each iteration. By 

applying relative frequencies, we can determine the initial state distribution, 𝜋G, at time t = 1. 

 

 𝜋G
(i) = 𝛾5(𝑖) 

( 4.4.1 ) 

 

We can calculate the transition probability, 𝐴GJ, outlined by the transition probability, which can 

be expressed as the total expected number of transitions from state i to state j, over the expected 

number of transitions from state i, at time step t. 

 

 
𝐴GJ
i =

𝜁H 𝑖, 𝑗­Q5
H^5

𝛾H(𝑖)­Q5
H^5

 
( 4.4.2 ) 

 

Similarly, for the emission matrix we can calculate the emission probabilities denoted by matrix 

𝐵G 𝑣 (i), at each iteration n, 

 

 
𝐵G(𝑣·)(i) =

1(𝑂H = 𝑣)𝛾H(𝑖)­
H^5

𝛾H(𝑖)­
H^5

 
( 4.4.3 ) 
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Where 1 𝑂H = 𝑣  is the indicator function indicating whether-or-not the observed symbol 𝑂H, is 

equal to 𝑣· . We repeat the steps until convergence of 𝜃 i = (𝜋O
(i), 𝐴O

i , 𝐵O
(i)) via the Baum-

Welch algorithm with respect to model accuracy.  

 

4.5 Multiple Sequences HMM Parameter Estimation 
The time series transaction histories of all customers are not contained in one continuous time 

series sequence because each customer, c, exhibits a specific sequence of observations that begins 

at the first time step. Therefore, it is necessary to modify the Baum-Welch algorithm to allow it to 

estimate the parameters for multiple sequences. Each independent sequence, denoted as 𝑂5:­°
(O) , 

contains the sequence of observation symbols for customer c. 

 

 𝑂5:­°
(O) = (𝑂5

O , 𝑂X
O , … , 𝑂­°

O ) ( 4.5.1 ) 

 

We assume that all observation sequences, 𝑂5:­°
(O) , are independent of one another for all c 

customers. However, all independent sequences are modeled the same HMM parameters 𝜃. Given 

this, we can express the probability of observing all individual sequences P 𝑶 , as, 

 

 
P 𝑶 = 𝑃(𝑂5:­°

O |𝜃)
Ã

O^5

 
( 4.5.2 ) 

 

For multiple observation sequences, we calculate the initial probability for state i as the simple 

average of initial probability across all observation sequences via the Baum-Welch Algorithm. 

 

 
𝜋′ 𝑖 (i) =

𝛾5 𝑖 (O)Ã
O^5

𝐶  
( 4.5.3 ) 
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For each customer’s observation sequence, we denote 𝑍 𝑖, 𝑗 (O)  as the expected number of 

transitions from state i to state j for the entire time series 1: 𝑇O specific to the observation sequence 

pertaining to customer c. 

 

 
𝑍 𝑖, 𝑗 (O) = 𝜁H 𝑖, 𝑗

­°Q5

H^5

 
( 4.5.4 ) 

 

The transition probability matrix 𝐴GJ is calculated as the sum of the expected number of transitions 

from state i to j, represented as 𝛧H 𝑖, 𝑗 (O), divided by the expected number of transitions from i, 

represented by 𝛾H 𝑖
­°Q5
H^5 ,  for each customer c. 

 

 
𝐴′GJ
(i) =

𝑍 𝑖, 𝑗 (O)Ã
5

𝛾H 𝑖
­°Q5
H^5

Ã
5

(O) 
( 4.5.5 ) 

 

The emission probability matrix 𝐵G(𝑣·) is computed as the expected number of instances where 

the observation symbols 𝑂H  had been equal to 𝑣·  provided the hidden state i, divided by the 

expected number of instances where i occurred. 

 

 
𝐵′G 𝑣· (i) =

1 𝑂H = 𝑣· 𝛾H 𝑖 (O)­°
H^5

Ã
Æ^5

𝛾H 𝑖 (O)­°
H^5

Ã
Æ^5

 
( 4.5.6 ) 

 

Similar to the parameter estimation step for a single observation sequences for multiple 

independent observation sequences, we perform a parameter update on the model parameters 

𝜃 i = (𝜋′(i), 𝐴′ i , 𝐵′(i))  for all customers’ observation sequences for n iterations until 

convergence of the Baum-Welch Algorithm with respect to model accuracy. 
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Chapter 5. Customer Classification via Hidden Markov 

Model  
 

This chapter investigates the construction of a Hidden Markov Model designed to detect fraud on 

eCommerce networks by closely examining financial transactions. Firstly, it outlines the feature 

construction phase where time series observations, on a per transaction basis, are aggregated to 

produce what we referred to as window features. Subsequently, we apply a clustering algorithm to 

categorize each transaction summary into an observation symbol or centroid, which describes the 

relative spending behaviour of the customer’s transactions, allowing for discrete HMM modelling. 

From each healthy customer’s observation symbols we construct an HMM via the Baum-Welch 

algorithm. We combine the HMM classifier with a logistic regression model constructed from 

customer registration features to build a robust fraud classifier capable of detecting fraud in real-

time, concurrent with the arrival of transactions within a fixed time window, w. Subsequently, we 

evaluate the performance of the classifier on its ability to maximize the detection rate (or TPR) 

provided a constraint on the false positive rate (FPR) in order to provide an online fraud detection 

procedure to detect fraud in an automated fashion. 

 

5.1 Time Series Feature Construction 
 

Notation Definition 
c Customer index. 
C Total number of customers. 
𝑡 Timestamp. 
𝛥𝑡 Time interval length, we specify 12 hours. 
𝑤H Time window index. Represents the time interval [𝑡, 𝑡 + 𝛥𝑡). 
𝑥G
(¿É) 𝑖HÊ	cash flow transaction within time window 𝑤H. 
𝑥G 𝑖HÊ	cash flow transaction within a customer’s complete transaction 

history. 
𝑛 Number of transactions within each time window 𝑤H. 

𝛷Ë(𝑤H) Window function that combines the set of transaction 
{𝑥5

¿É , … , 𝑥i
¿É } to a single observation. 

{𝛷5, … , 𝛷Ë} Set of d aggregation functions, where d = 6. 
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𝛷 𝑤H O Vector of window functions of {𝛷5, … , 𝛷Ë} over time window 𝑤H 
for customer c. 

𝑁­° Number of time windows within 𝑇O − 𝑡O5, rounded down to the 
nearest multiple of 𝛥𝑡. 

𝑇O Timestamp of final transaction for customer c. 
𝑡O5 Timestamp of initial transaction for customer c. 
𝑡O Timestamp of nearest multiple of 𝑇O, less than 𝑇O. Defined as  𝑡O5 +

𝑁­° ∗ 𝛥𝑡.  
𝛥𝑇O Timespan of a customer’s entire transaction history. 
𝛬O
Îs  The sequence of all window functions, {𝛷5, … , 𝛷Ï}, over all time 

windows pertaining customer c, for marketplace transactions. 
𝛬O
ÎÐ  The sequence of all window functions, {𝛷5, … , 𝛷Ï}, over all time 

windows pertaining customer c, for virtual wallet transactions. 
𝒙(¿É) Represents {𝑥5

¿É , … , 𝑥i
¿É } which is the set of all transactions 

within 𝑤H.  
Table 5.1.1 Notation for feature time windowing. 

 

5.1.1 Aggregation Functions 

For financial fraud detection, it is a standard practice to define a set of time windows over a fixed 

time frame, where transactions belonging to that time frame are aggregated within a specific 

window, we refer to this as time windowing. (Whitrow, et al., 2009) demonstrated that financial 

fraud classification using a transaction aggregation approach is more feasible and proposes a 

window period of 𝛥𝑡 = 1,3,7 days. There are several reasons why we perform time windowing on 

our transaction data.  

- Certain combinations of transactions may be more indicative of fraudulent behaviour than 

single transactions alone. Time windowing allows us to capture the behaviour of multiple 

transactions within a single time window. 

- Enforces a uniform time increment, 𝛥𝑡, to provide an expected time period indicative as to 

when each decision is to be made. 

- Provides the capability for multiple time series sequences be aligned meaningfully. All 

features are indicative of spending within a 𝛥𝑡 time period. 

- Accounts for the time in between transactions, as well as the amount of each transaction, 

in a simple and feasible manner (instead of two features to model both transaction amount 

and arrival time, one feature captures both sources of information). 
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In our research, we opt for a 12-hour time interval for 𝛥𝑡 instead of 𝛥𝑡 = 1,3,7 days, due to the 

high volume of eCommerce transactions and also the necessity for a more expedited decision 

process. A window function is applied over a moving time window. Since 𝛥𝑡 is constant, we can 

define the time window, 𝑡, 𝑡 + 𝛥𝑡 , simply as 𝑤H , where, 𝑤H  denotes both the time at the 

beginning of the time window, up until the end of the time window 𝑡 + 𝛥𝑡. 

 

 𝑤H ≔	 [𝑡, 𝑡 + 𝛥𝑡) ( 5.1.1 ) 

 

We define 𝛷(𝑤H) as some function over all observations {𝑥5
¿É , … , 𝑥i

¿É } within time window 𝑤H, 

aggregating {𝑥5
¿É , … , 𝑥i

¿É } to a single value defined as 𝛷(𝑤H). 

 

 𝛷 𝑤H ≔ 𝛷({𝑥5
¿É , … , 𝑥i

¿É }) ( 5.1.2 ) 

 

𝛷  is an aggregate function that operates on the transactions within each time interval. Each 

aggregate function 𝛷 provides distinct information about the spending behaviour of the customer 

at its respective time window, 𝑤H. For each discrete time window, 𝑤H, the set d = 6 where there 

are 6 window functions {𝛷5, … , 𝛷Ï} summarizes all the numerical value data points. 

 

Window Function 𝛷 Notation Definition 

Sum 𝛷5 
𝛷5 𝑤H = 𝑥G

(¿É)
i

G^5

 

Count 𝛷X 𝛷X 𝑤H = 𝑛 

Arithmetic Mean 𝛷n 

 
𝛷n 𝑤H =

1
𝑛 𝑥G

(¿É)
i

G^5

 

Max 𝛷Ó 𝛷Ó 𝑤H = 𝑀𝑎𝑥 𝑥5
¿É , … , 𝑥i

¿É  

Min 𝛷Ô 𝛷Ô 𝑤H = 𝑀𝑖𝑛 𝑥5
¿É , … , 𝑥i

¿É  
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Sample Standard 

Deviation 

𝛷Ï 

𝛷Ï 𝑤H =
1

𝑛 − 1 𝑥G
(¿É) − 𝛷n 𝑤H

X
i

G^5

 

Table 5.1.2 Table of aggregation methods. 

We present an illustration of a single customer’s transaction sequence on simulated data to 

demonstrate the application of time windowing. Suppose a single customer performs a total of 4 

transactions in their lifetime. In the example, the timespan of the customer is divided into 4 x 12-

hour time windows, 𝑤H.  

 
Figure 5.1.1 Graphical illustration of the time window procedure for single customer’s transaction sequence. 

 

Figure 5.1.1 illustrates a window function being applied on all time windows pertaining to a single 

customer’s transaction sequence. There are 6 window functions, 𝛷 = {𝛷5, 𝛷X, 𝛷n, 𝛷Ó, 𝛷Ô, 𝛷Ï}, 

that operate within each time window. We previously define the set of time window functions, 𝛷, 

in Table 5.1.2. The values of 𝛷  and 𝒙(¿É)  for a single customer’s transaction sequence are 

illustrated Table 5.1.3.  
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𝑤H Transaction Values 𝛷5(𝑤H)  𝛷X(𝑤H) 𝛷n(𝑤H) 𝛷Ó(𝑤H) 𝛷Ô(𝑤H) 𝛷Ï(𝑤H) 
0 𝑥5

5 = {2000}  2000 1 2000 2000 2000 0 

1 𝑥5
X , 𝑥X

X = {500, 3000}  3500 2 1750 500 3500 1767.8 

2 𝑥5
n = {1000}  1000 1 1000 1000 1000 0 

3 {} No transactions 0 0 0 0 0 0 
Table 5.1.3  Table of sample transaction values, and windowing method. 

Let 𝑁­° represents the number of time intervals contained within the customers’ entire time history 

𝑇O − 𝑡O5 , where 𝑡O5  is the time of the initial transaction, and 𝑇O  is the timestamp of the final 

transaction of customer c. 

 

 
𝑁­° =

𝑇O − 𝑡O5

𝛥𝑡  
( 5.1.3 ) 

 

It is evident that the time interval 𝑇O − 𝑡O5 is almost never an exact multiple of 𝛥𝑡, therefore we 

round the number of time intervals down to the nearest integer number. 𝑁­° ∗ 𝛥𝑡 marks the final 

time window of the customer nearest to 𝑇O that is less than 𝛥𝑡.  Let 𝛬O represent the sequence of 

all window functions, {𝛷5, … , 𝛷Ï} , over all time windows pertaining customer c. The 

representation can be presented as follows, 

 

 
𝛬O =

𝛷5(1) … 𝛷Ï(1)
⋮ … ⋮

𝛷5(𝑤H°) … 𝛷Ï(𝑤H°)
	 

( 5.1.4 ) 

 

Alternatively, 𝛬O, can be denoted as a sequence of vectors 𝛷 𝑤H , belonging to customer c. 

 

 𝛬O = {𝛷 1 ,… ,𝛷(𝑤H°)}	 ( 5.1.5 ) 
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Where each row of 𝛬O represents the set of all window functions on transactions contained within 

a specific time window, where 𝑤H°  marks the final time window in the customer’s transaction 

sequence. The observations are in sequential ascending order from the first time window to the 

last time window, for customer c.  

 

5.1.2 Time Windows for All Customers 

For each customer in the training set, we compute 𝛬O for both data sources, the marketplace and 

virtual wallet. We denote this as 𝛬O
(Îs) and 𝛬O

(ÎÐ) respectively. Table 5.1.2 presents an sample of 

𝛬O
(Îs) for a single customer (the sequence is cut short, for purposes of brevity). 

Timestamp 𝑥G 𝑖 
2016-04-21 9:29 100000 1 
2016-04-30 18:11 30000 2 
2016-05-02 7:32 171000 3 
2016-05-02 7:44 98000 4 

Table 5.1.4 Abridged sample of a single customer’s time series transaction from marketplace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

69 

 

 

Timestamp 𝛷5 𝛷X 𝛷n 𝛷Ó 𝛷Ô 𝛷Ï 𝑤H 
2016-04-21 9:00 100000 1 86 86 86 0 1 
2016-04-21 21:00 0 0 0 0 0 0 2 
2016-04-22 9:00 0 0 0 0 0 0 3 
2016-04-22 21:00 0 0 0 0 0 0 4 
2016-04-23 9:00 0 0 0 0 0 0 5 
2016-04-23 21:00 0 0 0 0 0 0 6 
2016-04-24 9:00 0 0 0 0 0 0 7 
2016-04-24 21:00 0 0 0 0 0 0 8 
2016-04-25 9:00 0 0 0 0 0 0 9 
2016-04-25 21:00 0 0 0 0 0 0 10 
2016-04-26 9:00 0 0 0 0 0 0 11 
2016-04-26 21:00 0 0 0 0 0 0 12 
2016-04-27 9:00 0 0 0 0 0 0 13 
2016-04-27 21:00 0 0 0 0 0 0 14 
2016-04-28 9:00 0 0 0 0 0 0 15 
2016-04-28 21:00 0 0 0 0 0 0 16 
2016-04-29 9:00 0 0 0 0 0 0 17 
2016-04-29 21:00 0 0 0 0 0 0 18 
2016-04-30 9:00 30000 1 2036 2036 2036 0 19 
2016-04-30 21:00 0 0 0 0 0 0 20 
2016-05-01 9:00 0 0 0 0 0 0 21 
2016-05-01 21:00 269000 2 2703.5 4448 959 2467.1 22 
2016-05-02 9:00 0 1 86 86 86 0 23 
2016-05-02 21:00 100000 0 0 0 0 0 24 

Table 5.1.5 Abbreviated 	𝛬O  for 𝑤H  = 1 to 24 for a single customer. 

The end result for each customer is a time window sequence consisting of equally spaced time 

windows that summarizes the transaction activity within the time windows, 𝑤H. 𝛷O(𝑤H) constitutes 

a multivariate observation that describes the spending behavior of the customer at each time 

window for a specific customer, c. The time window function is applied to all c customers to 

generate the observation sequence 𝛬O.  
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5.2 Data Preprocessing 
In order to construct a discrete time HMM, each of the multivariate numerical observations, 

𝛷(𝑤H), in must be discretized into observation symbols referencing to the features outlined in 

Table 5.1.2. This is accomplished using a clustering algorithm. Referencing (Srivastava 2008), we 

apply the K-means algorithm. The objective of the K-Means algorithm is to classify observations 

into groups, where each of the observations within each group are significantly closer to one 

another compared to observations outside their respective group. We refer to this as a 

neighborhood or cluster. Assigning all time windowed features 𝛷(𝑤H) to a cluster, will allow us 

to discretize the numerical observations, 𝛷(𝑤H),  values into discrete observation symbols, 𝑂(𝑤H).  

 

Notation Definition 
𝑀· Specific centroid location. 
K Number of centroids. 

𝑀·[𝛷] The centroid assignment of observation 𝛷. 
𝛷 𝑤H O Window function observation at time window 𝑤H for customer c. 
𝛷 An abbreviation for 𝛷 𝑤H O, representing a single multivariate observation. 
𝜱 Complete set of observations, 𝛷, for all customers, at all time windows. 
𝜱′ Subset of 𝒀 containing only 𝛷 where there was at least 1 transaction (non-dormant 

state). 
𝑴𝑲 Set of all possible centroids, or centroid matrix. 

𝑑 𝛷,𝑀·  Euclidean distance between observation 𝛷 and centroid 𝑀·. 
𝜇·G Centroid mean component. 

{𝛷,𝑀·[𝛷]} The set of all observations 𝛷 and its associated centroid assignment 𝑀·[𝛷]. 
𝑀·[𝛷] Centroid update after assignment step. 
𝑂 𝑤H O Observation symbol (centroid) at time window w for customer c. 
𝑀·  Magnitude of 𝑀·. Measured as the number of observations belonging to 𝑀·. 
d Dimensionality of the observation set, equaling 6 in our case. 

Table 5.2.1 K-Means algorithm notation. 

5.2.1 K-Means Algorithm 

First described in (MacQueen, 1967) and (Hartigan, 1975), the K-Means algorithm presents a 

geometric interpretation of the classification problem. The algorithm classifies a set of 

observations into K centroids via an iterative algorithm. Each centroid has the same dimensionality 

of observation 𝛷 𝑤H O, consisting of the 6 aggregation functions, outlined in Table 5.1.2, acting 
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on transactions contained in each time window. We use d to denote the dimensionality of the 

observation set, which is the total number of window functions. For our transaction data, d = 6. 

 

 𝛷 𝑤H O = 𝛷5 𝑤H … 𝛷Ë 𝑤H O ( 5.2.1 ) 

 

We abbreviate 𝛷 𝑤H O as 𝛷 for simplicity, because the K-Means algorithms does not consider for 

the time window, nor the customer that the time window belonged to. Each multidimensional 

centroid, 𝛭·, can be expressed as, 

 

 𝛭· = [𝜇·5 …	𝜇·Ë] ( 5.2.2 ) 

 

The set of all possible centroids, or the centroid matrix, can be expressed as 𝑴𝑲. Where 𝑴𝑲 is a 

K x d matrix, indicating that there are K centroids each with a dimensionality of d. 

 

 
𝑴𝑲 =

𝑀5
⋮
𝑀Ë

=
𝜇55 …	𝜇5Ë

⋮
𝜇Û5 …	𝜇ÛË

 
( 5.2.3 ) 

 

Each row of the centroid matrix represents a centroid, 𝑀Û. Each column represents a dimension, 

corresponding a an aggregate function, 𝛷Ë . Where an observation 𝛷  can belong to any of K 

centroids 𝛭·	𝜖	{𝑀5,𝑀X, … ,𝑀Û}, serving as a descriptive label for the frequency of spending, and 

amount of money spent within time window, 𝑤H, for customer c, relative to the rest of the healthy 

customers on the platform. The objective of the K-Means algorithm is therefore to assign a 

spending group 𝛭· to each observation 𝛷, such that a discrete variable is produced summarizing 

the monetary expenditure and frequency of transactions within time window 𝑤H . The following 

section provides the specific procedure of the K-Means algorithm. We begin by defining 𝑑 𝛷,𝑀·  

as the Euclidean distance, where,  

 

 𝑑 𝛷,𝑀· = 𝛷5 − 𝜇·5 X + 𝛷X − 𝜇·X X … 𝛷Ï − 𝜇·Ï X ( 5.2.4 ) 
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We see that for K centroids, each observation, 𝛷, has a Euclidean distance from itself to 𝑀· . 

Subsequently, we present the assignment step and computation step which work in conjunction to 

solve for fall observations and their assignments {𝛷,𝑀·[𝛷]}. 

 

Assignment Step 

The assignment step involves assigning 𝛷  to the centroid, 𝑀· , that minimizes the Euclidean 

distance 𝑑 𝛷,𝑀· , by iteratively selecting 𝑀· from K centroids. In other words, select 𝑀· that 

minimizes 𝑑 𝛷,𝑀· . This can be expressed by, 

 

 𝑀·[𝛷] = 𝑎𝑟𝑔𝑚𝑖𝑛
Ü	�	Û

𝑑 𝛷,𝑀Ü  ( 5.2.5 ) 

 

Where 𝑀·[𝛷] is the centroid assigned to observation 𝛷. 

 

Computation Step 

Provided the centroid assignments in the previous assignment step, the computation step computes 

a new set of centroids, based on the previous assignment. After each 𝛷 is assigned to a group 𝑀·, 

a new centroid, 𝑀·[𝛷], is calculated, referred to as the centroid update. In the update, we re-

compute new centroids based on the previous assigned observations 𝑀·[𝛷]. 

 

 𝑀·[𝛷] 	=
1
𝑀·

𝛷
Ý�sÞ

 
( 5.2.6 ) 

 

Where 𝑀·  refers to the number of observations assigned to 𝑀·. Equation ( 5.2.6 ) computes the 

new mean of 𝑀· based on the previous assignment. We repeat the assignment and computation 

steps, until all of  centroid updates, 𝑀·[𝛷], no longer change from the current centroid 𝑀·[𝛷] 

when updated via Equation ( 5.2.6 ). Let 𝜱 denote the set of all observations at all time windows, 

for all customers. We subsequently summarize the K-Means algorithm as follows, 
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K Means Algorithm 

For all 𝛷 in 𝜱 with at least 1 transaction, denoted as 𝛷 in 𝜱′: 

1. Select K initial centroids via random initialization 

2. Repeat the following steps until terminal condition (iii) is True: 

i. Assignment Step: Assign all  𝛷 in 𝜱′ to its closest centroid, 𝑀·[𝛷]. 

ii. Computation Step: Re-compute all centroids based on the previous assignment. 

iii. If 𝑀· does not change for a all 𝑴 since the previous iteration, Then Return all 

the set of all observations and its cluster assignment {𝛷,𝑀·[𝛷]}. 
Table 5.2.2 K-Means algorithm illustration. 

5.2.2 Illustrative Example 

We present a brief illustrative example of the K-Means algorithm on simulated multivariate data 

in 2 dimensions, for K = 3. Figure 5.2.1 presents the graphical illustration of the K-Means 

algorithm. Centroids, denoted by the stars in the graphical illustration, are randomly initialized at 

the first iteration. All observations are assigned to a centroid, indicated by each observations 

colour, which corresponds to the centroid closest to each individual observation point on the 2D 

plane.  In the assignment step a new centroid is computed via calculating the within cluster mean, 

provided the previous centroid assignment. We repeat the assignment and computation steps, until 

the computed centroids no longer change with each subsequent iteration, and we return the set of 

all observations and its cluster assignment {𝛷,𝑀·[𝛷]}, as indicated by the final iteration, Iteration 

No. 6. 



  

74 

 

 

 
Figure 5.2.1 Graphical illustration of the K-Means algorithm in 2D for K = 3. 

 
 

Iteration No. 1 𝜇·5 𝜇·X 
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𝑀5 (Blue) 5.59044019 7.29678711 
𝑀X (Red) 6.34239707 13.62655217 
𝑀n (Green) 5.32785306 12.70582335 
Iteration No. 2   
𝑀5 (Blue) 5.30196805 7.12030318 
𝑀X (Red) 9.45231665 11.14388061 
𝑀n (Green) 4.75017655 13.11345402 
Iteration No. 3   
𝑀5 (Blue) 4.39464 6.80742905 
𝑀X (Red) 9.48446621 9.4369295 
𝑀n (Green) 4.75374681 13.17555242 
Iteration No. 4   
𝑀5 (Blue) 3.50221811 6.77985561 
𝑀X (Red) 9.19561289 8.56522311 
𝑀n (Green) 4.81917091 13.14200682 
Iteration No. 5   
𝑀5 (Blue) 3.02152016 6.93357839 
𝑀X (Red) 8.93325765 8.00186898 
𝑀n (Green) 4.96890973 13.05344209 
Iteration No. 6   
𝑀5 (Blue) 3.02152016 6.93357839 
𝑀X (Red) 8.93325765 8.00186898 
𝑀n (Green) 4.96890973 13.05344209 

Table 5.2.3 Centroid outputs at each iteration of the K-Means algorithm on simulated data. 

 

5.2.3 Modified K-Means Algorithm 

We perform the K-means algorithm on each customer’s time window, consisting of d = 6 features. 

Each observation, independent of time and the customer it belonged to, is denoted by  𝛷, in both 

the marketplace and virtual wallet domains, where there has been at least one transaction made. 

For our application, the K-Means algorithm is modified slightly to incorporate a no spend group, 

where it categorizes 𝛷 as a “no spend” if no transactions appear for that time window. This is 

based on knowledge that if a customer does not spend during a time window they are in a dormant 

state, which is drastically different from a low spend state. The modified K-Means algorithm 

effectively discretizes the observed variables. Provided the centroid specifications in Table 5.2.4 

and Table 5.2.5, only time windows which contain at least one transaction are classified into one 

of the non-dormant spending groups for both marketplace and virtual wallet. Effectively, the 

modified K-Means algorithm generates list of observation symbols for all time windows belonging 
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to all customers. We refer to the centroid, 𝑀· , assigned to observation 𝛷 𝑤H O, as 𝑀·[𝛷 𝑤H O], 

which we will also denote as the observation symbol 𝑂 𝑤H O for future reference. Therefore for 

customer c, the observation symbol, 𝑂 𝑤H O, can be defined as, 

 

 𝑂 𝑤H O ∶= 𝑀·[𝛷 𝑤H O]	𝜖	{1,2,3,0} ( 5.2.7 ) 

 

Evidently, the K-Means algorithm discretizes the numerical observations of 𝛷 𝑤H O into a single 

categorical value 𝑂 𝑤H O	  constituting the observation symbols of the HMM model we will 

construct subsequently in this Chapter.  

 

5.2.4 K-Means Algorithm on Full Dataset 

We present 𝑴𝑲 for both marketplace and virtual wallet sources for all healthy customers, where 

K = 3 centroids, with an additional no spend group [0]. 𝑴𝑲 was fitted using a the modified K-

Means algorithm outlined in Section 5.2.3 for all 5050 customers in the training data and their 

respective transaction time windows 𝑤H. 

 

k Type 𝜇·5	 𝜇·X	 𝜇·n	 𝜇·Ó	 𝜇·Ô	 𝜇·Ï	
[1] high 129082.6 3.64 44843.2 52050.1 34789.4 8781.9 
[2] low 472.86 1.9 255.69 24.03 18.15 3.72 
[3] med 31914.4 3.4 17577.4 307.33 213.42 52.80 
[0] no spend* 0 0 0 0 0 0 

Table 5.2.4 Centroid assignments for K-Means algorithm – Marketplace transactions. 

k Type 𝜇·5	 𝜇·X	 𝜇·n	 𝜇·Ó	 𝜇·Ô	 𝜇·Ï	
[1] high 26422.44 4.7 7635.21 11751.35 4884.93 3243.18 
[2] low 300.49 2.0 145.47 191.63 106.64 47.64 
[3] med 6560.81 4.1 2414.6 3444.33 2467.80 988.5 
[0] no spend* 0 0 0 0 0 0 

Table 5.2.5 Centroid assignments for K-Means algorithm – Wallet transactions. 

Using these cluster assignments we classify each customer’s transaction window into the four 

distinct observation symbols. High [1], medium [3], low [2], and no spend [0]. Where the no spend 

spending level is a heuristic condition that indicates no transaction has been made in the time 
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window. We reference (Srivastava, et al., 2008) for the selection of K = 3 spending groups, which 

essentially divides the customers into 3 different spending profiles (high, medium, and low), with 

an additional no spend group 7 . In summary, the preprocessing phase involves aggregating 

transactions to transform them into time windows with multivariate features, 𝛷 𝑤H O , and 

subsequently applying the K-Means algorithm to assign each time window an observation symbol, 

𝑂 𝑤H O, for each time window 𝑤H, for customer c. 

 
Figure 5.2.2 Data preprocessing procedure. 

5.3 HMM Modeling of Customer Spending Behaviour 
Based on the concept of stochastic modeling, we present an innovative approach that considers the 

sequential information contained in a time series process. An HMM can be constructed for each 

customer separately, implying that each customer must make a series of transactions before an 

HMM can be constructed. This per-customer HMM is demonstrated in (Srivastava, et al., 2008), 

and was shown to be effective in detecting cases of financial fraud. In our implementation, we 

differ from the former model by constructing a general HMM model for all customers in the 

training set. This allows fraud detection to begin immediately for each customer in the testing set, 

                                                

 
7 With this addition our algorithm does not specifically follow the traditional K-means algorithm, 

but adheres to a modified version. This change is implemented because we have prior knowledge 

that the no spending state is significantly different from a state where spending has occurred.  
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eliminating the cold-start problem that a per-customer based HMM would imply. Furthermore, a 

general model is inherently descriptive of the healthy customer as a whole and is capable of 

forecasting healthy transactions for any future healthy customers. 

 

We construct an HMM classifier from the transaction histories of healthy customers only, provided 

the observation symbols outlined Section 5.2,. The classification algorithm considers the 

probability of observing the sequence, based on the model constructed from healthy customer’s 

transactions. Using the same splitting mechanism introduced in Chapter 2, we divide the training 

data according to a 75% - 25% split. 75% of the data is randomly sampled without replacement 

from the complete data set to form the training set. Only the healthy customers in the training set 

are used to construct the HMM representing the behaviour of healthy customers. We refer to this 

model as the reference model. The remaining 25% of the data is denoted as the test set, and is used 

for holdout validation. The test set contains the transaction histories of both healthy and fraudulent 

customers which are mutually exclusive of the training set. The objective of the classifier to 

distinguish between the two types of customers in the test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation Definition 
𝑤H Time window 𝑤H. 
𝑊O Final time window of customer c. 
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𝑂(𝑤H) Observation symbol (centroid) at time window 𝑤H for any single customer. 
𝑂 𝑤H O Observation symbol (centroid) at time window 𝑤H specific to customer c. 
𝜃Î HMM parameters (A, B, 𝜋) reference model, pertaining to either marketplace or 

virtual wallet. 
𝜃Îs Marketplace HMM model parameters. 
𝜃ÎÐ Virtual wallet HMM model parameters. 
𝜋[𝜃Îs] HMM initial state probability distribution for marketplace. 
𝜋[𝜃ÎÐ] HMM initial state probability distribution for virtual wallet. 
𝑂5:Ð°
(O)  Full observation sequence of customer c, from the first time window until the final 

time window 𝑊O. 
𝐴[𝜃Îs] General HMM transition probability matrix for marketplace. 
𝐵[𝜃Îs] General HMM emission probability matrix for marketplace. 
𝐴[𝜃ÎÐ] General HMM transition probability matrix for virtual wallet. 
𝐵[𝜃ÎÐ] General HMM emission probability matrix for virtual wallet. 
𝑂5:¿É
(O)  Observation sequence of customer c, up until time window 𝑤H. 

𝛺¿É
(O) Probability of observing 𝑂5:¿É

(O)  provided 𝜃Î, calculated via the forward algorithm. 
𝜂 Transaction probability ratio threshold indicating the limit for 𝜂¿É

(O). If 𝜂¿É
(O) > 𝜂 then 

the observation sequence is deemed anomalous.  
𝜂¿É
(O) Transaction probability ratio for customer c at time window 𝑤H. 
𝜂Îs 𝜂 threshold for marketplace model. 
𝜂ÎÐ 𝜂 threshold for virtual wallet model. 

Table 5.3.1 HMM construction for classification notation. 

5.3.1 HMM Parameters 

In our HMM, we specify three distinct hidden states8, where each hidden state will exhibit a 

different set of emission probabilities for 𝑂 𝑤H O . The initial state probabilities for both 

marketplace 𝜋 𝜃Îs , and virtual wallet 𝜋 𝜃ÎÐ , at time w = 1, will be uniform for 3 hidden states.  

 

 
𝜋 𝜃Îs = 𝜋 𝜃ÎÐ =

1/3
1/3
1/3

 
( 5.3.1 ) 

 

                                                

 
8 Though there could be more hidden states selected, we confine the scope of our research to the 3 

hidden state specification. 
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Applying the Baum-Welch algorithm on the observation sequence of centroids, we construct an 

HMM to model the transaction behaviour of healthy customers. Three hidden states are defined 

as, {1, 2, 3}, which transit between one another, based on the transition probability parameters 

defined by 𝐴[𝜃Îs], for marketplace transactions only. Each healthy customer in the training set 

will provide a sequence of transactions beginning with initial state probability 𝜋 𝜃Îs  or 𝜋 𝜃ÎÐ , 

depending on whether these transactions belong to the marketplace or virtual wallet respectively. 

Each customer’s complete observation symbols sequence, 𝑂5:Ð°
(O) , are then fitted via the Baum-

Welch algorithm for multiple sequences via the method presented earlier in Chapter 4. After fitting 

the multiple sequence HMM on all 𝑂5:Ð°
(O)  in the training set for marketplace, we obtain the 

transition matrix 𝐴[𝜃Îs]. 

 

 
𝐴[𝜃Îs] =

0.3425 0.5992 0.0582
0.3427 0.6027 0.0545
0.2775 0.4356 0.2869

 
( 5.3.2 ) 

 

We present the emission probabilities of the HMM as the probability of belonging to each of the 

4 observation symbols {0, 1, 2, 3}, provided the hidden state {1, 2, 3}. This constitutes the emission 

matrix of the HMM, 𝐵[𝜃Îs], for marketplace transactions only. 

 

 
𝐵[𝜃Îs] =

0.9445 3.182 ∗ 10Qn 6.484 ∗ 10Qn
0.9727 1.398 ∗ 10QÓ 1.523 ∗ 10QX
0.4325 6.612 ∗ 10QX 0.2124

		
4.578 ∗ 10QX
1.189 ∗ 10QX
0.2889

 
( 5.3.3 ) 

 

Similarly, the transition and emission probability matrices of all observation sequences 𝑂5:Ð°
(O)  on 

the virtual wallet are calculated via the Baum-Welch Algorithm as well, which we refer to as 

𝐴 𝜃ÎÐ  and 𝐵 𝜃ÎÐ  respectively. 

 

 
𝐴 𝜃ÎÐ =

0.3481 0.5882 0.0636
0.3465 0.6012 0.0522
0.3079 0.4065 0.2855

 
( 5.3.4 ) 
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𝐵 𝜃ÎÐ =

0.9256 2.823 ∗ 10QX 7.365 ∗ 10QÓ
0.9851 1.281 ∗ 10Qn 1.522 ∗ 10Qn
0.4293 2.203 ∗ 10Q5 6.584 ∗ 10QX

		
4.536 ∗ 10QX
1.205 ∗ 10QX
2.845 ∗ 10Q5

 
( 5.3.5 ) 

 

5.3.2 Sequence Acceptance Classification Algorithm 

As previously outlined, an HMM is fitted onto the observation symbols belonging to only healthy 

customers in the training set via the Baum-Welch Algorithm, where the hidden states are 

characteristic of the spending behaviour of the customers at that specific instance in time.  We 

refer to the parameters of this healthy model as 𝜃Î (where 𝜃Î can pertain any HMM model, either 

marketplace or virtual wallet). For each customer c, in the testing set, we calculate the probability 

of observing the sequence 𝑂5:¿É
(O)  using forward algorithm with HMM parameters 𝜃Î. We refer to 

this probability as 𝛺¿
(O), for customer c. 

 

 𝛺¿É
(O) = 𝑃(𝑂5:¿É|𝜃Î) 

( 5.3.6 ) 

 

We classify the transaction history of all customers, to construct a spending profile of healthy 

customers, where 𝛺¿É  refers to the probability of observing 𝑂5:¿É
(O)  provided parameters 𝜃Î 

computed using the forward algorithm. We compute 𝛺¿É
(O) every time 𝑤H increments, thus we must 

account for the change in 𝛺¿É
(O) at each progressive time window. The difference between each of 

the calculated probabilities is measured as, 

 

 ∆𝛺¿É
(O) = 𝛺¿É

(O) − 𝛺¿ÉQ5
(O) , 𝑓𝑜𝑟	𝑤H > 0 ( 5.3.7 ) 

 

The transaction probability ratio for customer c is defined as 𝜂¿É
(O), where, 

 

 
𝜂¿É
(O) =

∆𝛺¿É
(O)

𝛺¿É
(O)  

( 5.3.8 ) 
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𝜂¿É
(O) represents the change in probability when the additional observation 𝑂5:¿É

(O)  is observed. This 

is represented by ∆𝛺¿É  divided by 𝛺¿ÉQ5 . Subsequently we define a threshold, 𝜂 , where the 

stopping condition applies at time window 𝑤H if,  

 

 𝜂¿É
(O) > 𝜂 ( 5.3.9 ) 

 

Where 𝜂 is a fixed threshold that determines the threshold where a positive anomaly is detected. 

If 𝜂¿É
(O) > 𝜂, then the algorithm will signal that the spending behaviour of customer c deviates from 

that of a healthy customer’s spending behavior, constituting a fraud signal.  

 

5.4 Fraud Prevention Procedure and Detection Algorithm 
 

Notation Definition 
𝛷5:¿É Observed sequence 𝛷 from time 1 to 𝑤H. 
𝜃äå Logistic regression model parameters, for customer registration features. 
𝑂¿É

O  Single observation symbol for customer c, at time window 𝑤H 

𝑃�
O (𝜃äå) Probability (of fraud) value produced by model 𝜃äå, on the registration features 

pertaining to customer c.  
𝑃�¦(𝜃äå) Probability threshold for 𝜃äå, where the 𝜃äå will produce a positive fraud signal 

(1) if 𝑃�
O 𝜃äå > 𝑃�¦(𝜃äå). 

𝑾(𝒄) The set of all time windows pertaining to customer c. 
𝑶(𝒄) Full observation symbol sequence pertaining to customer c. 
𝐼äå
(O) Indicator function for indicating if 𝜃äå if produced a positive fraud signal 

𝐼Îs
(O)  Indicator function for indicating if 𝜃Îs if produced a positive fraud signal 

𝐼ÎÐ
(O)  Indicator function for indicating if 𝜃ÎÐ if produced a positive fraud signal 

ℤ 𝑤H O Zeta algorithm output at time window 𝑤H customer c. 
ℤ Zeta algorithm for fraud detection. 

Table 5.4.1 Fraud detection algorithm notation. 

In this section, we outline an ensemble method that combines the output of two HMM’s and a 

logistic regression model on customer registration features, which we refer to as LR1. LR1 serves 

as a baseline for fraud detection. As LR1 does not entail the use of time windowed features, this 

allows LR1 to provide a fraud detection signal before the customer makes any transactions, as it 
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relies solely on feature provided upon customer registration. For the same reason, however, LR1 

entails a high false positive rate due to the fact that registration features alone cannot be entirely 

informative of a customer’s intentions on an eCommerce platform. In order to reduce the false 

positive rate, we combine LR1 with HMM modelling on time windowed features increasing the 

overall detection rate of a model. Our research aims to provide an algorithm that significantly 

enhances the fraud detection rate on any general platform in the eCommerce industry (which can 

also extend to any industry that exhibits a high volume of financial transactions). We also seek to 

provide a means to perform fraud detection on a continuous online basis, and to provide further 

in-depth research into fraud detection simulation where transactions are arriving in real-time, 

considering the dynamic nature of customers.  
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Table 5.4.2 Customer behaviour model construction pipeline. 

 

5.4.1 Automated Fraud Detection Algorithm 

The ensemble model which combines HMM modelling with logistic regression is denoted as the 

ℤ algorithm. We opt to apply two HMM’s to the ℤ algorithm because a single HMM is prone to 

generate a high amount of false positives. This is due to the fact that, for a single HMM, the amount 

of transactions from time window to adjacent time window is far greater than the number of 

customers. At any of these time window transactions, a potential fraud signal can be generated 
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raising the probability of obtaining false positives. To mitigate this, we combine two HMM’s to 

reduce the False Positive Rate of a single HMM. As one signal from an HMM is not enough to 

identify that the customer is fraudulent, a combination of signals must be sufficient. To further 

mitigate this issue, we combine the result of a logistic regression model, adding information about 

the state of each customer upon registration, features which are not time dependent. The 

combination of the three models allows us to retain a low FPR while attaining a higher fraud 

detection rate. 

 

At each 12-hour time window each customer is evaluated based on the output constructed from 

the three models, whose parameters are represented by 𝜃Îs , 𝜃ÎÐ and 𝜃äå. Where 𝜃Îs are the 

parameters of the HMM that model customer behaviour on the marketplace,  𝜃Îs  are the 

parameters of the HMM that models customer behvaiour on the virtual wallet, and 𝜃äå are the 

parameters of LR1, the logistic regression model that models customer registration features. The 

prediction is a combination of the signals of all three models, which we denote as the ℤ  Algorithm, 

at time window 𝑤H. 

 

ℤ Algorithm for Ensemble Modeling of Customer Behaviour 

Require HMM Model Parameters of Marketplace transactions 𝜃Îs. 

Require HMM Model Parameters of Virtual Wallet transactions 𝜃ÎÐ. 

Require Logistic Regression Model Parameters on Registration Features 𝜃äå. 

For each customer, c in test set C: 

Perform Logistic Regression with Parameters 𝜃äå to produce 𝑃�
O (𝜃äå). 

I. Calculate 𝐼äå
(O) = 	𝟏[𝑃�

O 𝜃äå > 	𝑃�¦ 𝜃äå ], where 1 is an indicator function. 

II. For each time window, 𝑤H, in subset of 𝑾(𝒄): 

1. Append the future observation, 𝑂¿Éj5
O , to the current time series sequence, 𝑂5:¿É

O .   

2. Calculate 𝜂¿É
O (𝜃Îs) for 𝑂5:¿É

O , for incoming marketplace observation using 𝜃Îs. 

3. Calculate 𝜂¿É
O (𝜃ÎÐ) for 𝑂5:¿É

O , for incoming wallet observation, using 𝜃ÎÐ. 

4. Evaluate [	𝐼Îs
(O) , 𝐼ÎÐ

(O) ], where 𝟏 is an indicator function defined as, 
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i. 𝐼Îs
(O) = 		𝟏[𝜂¿

O 𝜃Îs > 	𝜂Îs]   

ii. 𝐼ÎÐ
(O) = 		𝟏[𝜂¿

O 𝜃ÎÐ > 	𝜂ÎÐ] 

5. Calculate ℤ 𝑤H Æ = 	 𝐼äå
(O) + 𝐼Îs

(O) + 𝐼ÎÐ
(O)  

6. If ℤ 𝑤H O > 1 Then Exit and Return 1. 

7. Else If 𝑂¿Éj5
O  is the last observation in 𝑾(𝒄),  Then Exit and Return 0. 

 
Table 5.4.3 ℤ(𝑡) Algorithm outline. 

The ℤ Algorithm evaluates the time windowed features of each time window of each customer as 

illustrated in Figure 5.2.2. Subsequently, the algorithm builds an HMM on top of the discrete time 

series data belonging to both the marketplace and the virtual wallet. In addition, it constructs a 

logistic regression model that is trained on customer registration features, which are not time series 

dependent, and exist before any transactions are made. Provided the output of the three models, 

the ℤ Algorithm stipulates a logical condition, enforcing that there must be at least two models out 

of the three that produce a positive anomaly signal before the customer, at time window w, is 

deemed to be anomalous. In which case, the algorithm will return a true value of 1, otherwise it 

will return 0 at the end of observation symbol sequence, 𝑶(𝒄) , indicating that no anomalous 

behavior was detected for customer c. 
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Figure 5.4.1 ℤ(𝑡) Algorithm functional diagram. 

 

5.4.2 Fraud Detection Results 

We provide a rule-of-thumb where the FPR should remain below 0.05, we refer to this are our 

constraint. This constraint on the FPR is strictly enforced on the ℤ Algorithm (however we will 

see later that not all classification methods explored in this thesis can yield such a low FPR value, 

therefore we relax this constraint for classification algorithms that cannot achieve this). 

Simultaneously, we seek to maximize the detection rate, we refer to this as the objective function. 

The process of finding the probability thresholds (𝑃�¦, 𝜂Îs, 𝜂ÎÐ) that both maximizes the objective 

function, and meets our constraint is referred to as hyperparameter optimization, where the 

probability thresholds of each model are referred to as a hyperparameters.  

 

Since the search space is not unfeasibly large, we manually adjust the hyperparameters 

(𝑃�¦, 𝜂Îs, 𝜂Î¿) in a randomized manner to maximize the objective function while ensuring that the 

constraint is met. We refer to this as a randomized search, where not all possibilities of 

hyperparameters are explored, but we complete the search once one set of hyperparameters meets 
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the constraint. By conducting this straight forward search method 9  we determine a set of 

probability threshold levels, where we can calculate the detection rate (TPR). This implies that 

although the optimization constraints are met, there may possibly exist be arrangements of 

hyperparameters that can potentially yield lower FPR’s, with higher TPR’s. However, our 

selection of probability thresholds values are already sufficient to outperform any of the previously 

selected classification algorithms, as evidenced in Figure 5.4.3. 

 

Threshold Value 
𝑃�′ 0.0027143 

𝜂Îs  0.98107 
𝜂ÎÐ  0.99835 

Table 5.4.4 Threshold values (hyperparameters) for Zeta algorithm. 

 

Model Performance Count 
TP (True Positives) 100 
TN (True Negatives) 2072 
FP (False Positives) 1 
FN (False Negatives) 108 
FPR (False Positive Rate) 0.049541 
TPR (True Positive Rate) 0.99010 

Figure 5.4.2 Decision tree model performance parameters. 

The ℤ algorithm, combining both marketplace and virtual wallet features in addition to customer 

registration features, obtains excellent classification results superior than that of any aggregate 

feature classification method previously investigated in Chapter 3. This is due to the fact that the 

ℤ Algorithm considers additional information concerning behavioural changes of each customer. 

The ℤ Algorithm considers the acceptance probability of observations symbols related to customer 

spending as they sequentially move forward in time, whereas an aggregate feature classification 

                                                

 
9  However, there exist iterative parameter such as the Nelder-Mead Simplicial Heuristic and 

Particle Swarm Optimization (to name a few), that can be used to for the task of hyperparameter 

optimization. These methods are beyond the scope of this research.  
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method considers only the final summary of features and performs a traditional classification 

technique to distinguish between fraudulent and healthy customers.  

 
 

 
Figure 5.4.3 Comparison of various fraud detection algorithms by detection rate and false positive rate. 

 
Model Identifier Model Name 

LR1 Logistic Regression on Customer Registration Features 

LR2 Logistic Regression on Select Registration and Time Series Features 

NB1 Naïve Bayesian Classifier on Customer Registration Features 

DT1 Decision Tree on All Available Features 

RF1 Random Forest on All Available Features 

Zeta ℤ Algorithm 
Table 5.4.5 Model identifier dictionary. 

Because of the ℤ Algorithm’s dynamic classification approach which updates observation symbols 

moving forward in time, it is able to detect signals that are descriptive of a customer’s change in 
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spending behaviour. This is allows the platform to block fraudulent customers preventively in 

order to mitigate the financial damage that can occur if such customers allowed to continue making 

transactions on the system. This approach is not applicable in the aggregate feature classification 

because it requires that a significant amount of transactions accrue, 6-months in our case, before 

customer classification can occur. In the aggregate feature classification methods, even if the 

fraudulent customer is accurately identified, a significant time will have passed before a fraudulent 

customer can be blocked. Therefore, studies that rely on the aggregate feature classification may 

not be ideal for real-time industry applications in the field of fraud detection. 

 

Ultimately, our HMM detects fraud by examining the difference between the HMM forward 

probability with each additional observation symbol, denoted by ∆𝛺¿Éé�
(O) = 𝛺¿Éé�

(O) − 𝛺¿É
(O) . 

However, theoretically under a scenario where the customer starts off in a fraudulent fashion, the 

additional observational symbol, 𝛺¿Éé�
(O) , may not generate generate enough of a difference in 

forward probabilities to trigger a fraudulent signal. In our experiment, we have not found this issue 

to be a major factor affecting the classification accuracy of our model. However, we propose that 

if this issue does affect the accruacy of the model we can simply apply an threshold for the initial 

forward probability, 𝛺5
(O), in addition to a threshold for the change in forward probability of the 

observation sequence with each incrementing time window, ∆𝛺¿É
(O). 

 

 

 

 

5.4.3 Online Fraud Detection Algorithm 

For the purpose of online fraud detection, we apply the ℤ Algorithm in conjunction with human 

validation to ensure that healthy customers are not incorrectly blocked from the system. Upon the 

detection of an anomalous signal, ℤ 𝑤H O = 1 at time window 𝑤H, the customer is relayed over to 

a team of human examiners to confirm that the customer is fraudulent. If the examiners find that 

the customer has been falsely identified, then that customer will be reinstated back into the system 

as a healthy customer. Because the ℤ algorithm produces a false positive rate of just under 5%, we 
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expect that 5% of all customers flagged by the ℤ algorithm will be falsely classified. This is 

acceptable because the more critical matter is to ensure that all cases of fraudulent activity do not 

go undetected, thus we can sacrifice some false positive cases to achieve this end. 

 
Figure 5.4.4 Online fraud detection and prevention policy. 

As evidenced in Section 5.4.2, the ℤ  algorithm is capable of detecting almost all fraudulent 

customers, capable of replicating the detection capabilities human examination. Due to the ever 

evolving nature of fraud, the need for a human review to detect fraud manually will always exist 

and there should be no impetus to entirely eliminate the usage of human validation. As reflected 

in Chapter 2, only a small percentage (5%) of customers are marked as fraudulent. In reality, the 

percentage of fraudulent customers on an eCommerce network is significantly less than 5% (this 

is due to the fact that more fraudulent cases were injected into the sample data set for analysis 

purposes). The ℤ  Algorithm will immensely reduce the amount of human effort required to 

identify fraudulent behviour, as it will filter out the healthy customers that do not need human 

verification.   
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The ℤ Algorithm is able to identify common trends that are characteristic of fraud, reducing the 

amount of repetitive work performed by human examiners. To clarify, the ℤ algorithm is not 

capable of detecting new methods of fraud, therefore, a human review team will always be required 

to actively label such instances. Therefore, the goal of the ℤ	Algorithm is not to replace human 

examination entirely, but to substantially reduce the amount of repetitive effort required to 

recognize the pre-identified instances of fraud as labeled by human examiners.  

 

Fraud Detection Procedure: 

For each customer c, in the set of all customers: 

For each 12-Hour time window, 𝑤H: 

1. Receive all customers where ℤ 𝑤H O = 1 (potential fraud detected). 

2. Perform manual evaluation on that specific customer’s transaction history to confirm or 

deny whether or not the customer is fraudulent. 

a. If the customer is fraudulent, record the fraudulent behavior, and block the customer 

from making further transactions. 

b. If the customer is not fraudulent, continue to allow the transactions of that customer 

without interference. 
Table 5.4.6 Online fraud detection procedure. 

The fraud detection procedure outlined in this section provides a guideline for human examiners 

on the application of the ℤ Algorithm to reduce the amount of manual evaluation required to 

maintain a safe and profitable eCommerce platform. The ℤ  Algorithm provides a means for 

general eCommerce platforms to efficiently and effectively detect fraud without sacrificing 

detection rate, while attaining a high level of automation. The ℤ Algorithm serves as a form of 

machine intelligence that is able to distinguish between healthy customers, and fraudulent 

customers to an accurate degree. Subsequently, fraud detection specialists will be able to focus 

more of their effort to discovering new instances of fraud, as opposed to reviewing to confirm 

previously identified patterns of fraud. Once new patterns of fraud are demarcated, model training 

can be run to update the parameters of the model, as demonstrated in Section 5.3.1. We recommend 
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the model parameter update to be completed at a lower frequency than the 12-hour window. 

However, if the computing power is available, model parameters, 𝜃Îs  , 𝜃ÎÐ  and 𝜃äå , can be 

updated as soon as possible. This is up to the discretion of the industry’s preference, and the 

computing resources that are available. 
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Chapter 6. Conclusion 
6.1 Summary of Contribution 
This thesis provides two areas of significant improvement in the field of statistical fraud detection, 

specifically in the quickly advancing industry of eCommerce. We provide a comparative study 

between various forms of fraud classification methods, and examine the classification performance 

of each model provided our transaction dataset. Four traditional classification models were tested 

Logistic Regression, Naïve Bayesian Classifier, Decision Tree, and Random Forest. We 

discovered that the Random Forest model produces the best classification results of the traditional 

models, whereas Naïve Bayesian classifier produces the poorest results. The classification power 

of the Random Forest model can be attributed to its robust parameter estimation procedure which 

involves extensive resampling on the training data. And the poor performance of the Naïve 

Bayesian Classifier may be due to the fact that it assumes the probabilistic independence among 

all features, when in fact this may not always be the case. 

 

In the second part of the thesis, we develop the ℤ ensemble algorithm, which combines Hidden 

Markov Modelling and Logistic Regression. We find that our algorithm performs very well on the 

provided data set. We limit the false positive rate of the algorithm to 5%, while maximizing the 

detection rate of the algorithm. With a relatively low FPR, virtually all fraudulent cases are 

detected. This provides evidence that the ℤ algorithm is a good substitute for human judgement 

concerning fraudulent transactions. Implementing this algorithm, we will allow our industry 

partner to operate more efficiently by reducing the amount of manual labour required to inspect 

all transaction histories via human examination, while maintaining a high-level of fraud detection 

accuracy. 

 

The classification results yielded by the ℤ algorithm are highly effective at detecting fraud. The 

implementation of this fraud detection algorithm will allow our industry client to perform efficient 

and accurate fraud detection at a much higher scale than previously accomplishable on eCommerce 

networks. The ℤ algorithm is capable of replacing a significant amount of human detection effort. 

A smaller number of human examiners will be required to examine the customers who have been 
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classified as anomalous to verify the detections and subsequently terminate them from the 

platform’s services, or re-instate the customer if the algorithm made a false detection. This 

enhancement on the efficiency of the fraud detection process will improve the profitability of the 

organization while maintaining a high degree of customer trust due to the retained anti-fraud 

validity. 

 

6.2 Future improvements 
It is possible to improve this study in a multitude of ways. We focus on three areas which can be 

open to further investigation. These areas were not investigated during the development of this 

thesis due to the fact that we have already met the objective of devising a new algorithm that is 

able to classify fraudulent customers with a high detection rate, while maintaining a low FPR. 

Investigation of the more advanced methods is significantly different from the modeling 

approaches outlined in this thesis. However, these methods are also well-documented in literature, 

and should be investigated as future work in order to further understand the behaviour of 

customers, and achieve even better classification results. 

 

6.2.1 Model Parameter Adjustments 

In this project, we have chosen to select 3 hidden states, and 4 observation symbols that constitute 

the parameters which dictate structure of the Hidden Markov Model. Though it does provide 

excellent classification accuracy, it may be worthwhile to investigate varying selections of the 

number of hidden states and observation symbols, subsequently evaluating the effect that selection 

on the classification accuracy. Another evident area of improvement would be a detailed study of 

the optimal number of centroids to select when performing K-means clustering and its effect on 

classification accuracy. Furthermore, we suggest an open investigation into more advanced 

clustering mechanisms. An example of more advanced clustering techniques is DB Scan (Kriegel, 

1998), which is capable of detecting non-linearly separable clusters. An investigation into these 

techniques may improve the robustness of the clustering mechanism.  

 

6.2.2 Dimensionality Reduction 
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It would be worthwhile to explore dimensionality reduction techniques capable of capturing the 

same amount of information contained within the features, while reducing the dimensionality of 

the feature set. A common approach to this is Principal Component Analysis, or PCA, outlined 

first in (Bryant & Atchley, 1975) which can reduce the dimensionality of the feature space by 

computing a set of principal components which represent the majority of the feature space, at a 

lower dimensionality. Adding an additional step of dimensionality reduction to the classification 

algorithm can reduce the computation effort of the algorithm, as well as reduce redundancy due to 

cross-correlation of features.  

 

6.2.3 Exploration with Neural Networks 

For purposes of fraud detection, the application of neural networks (Rumelhart, et al., 1986) have 

been applied successfully. For example in (Fu, 2016), the application of Neural Networks for fraud 

detection have shown very good classification capabilities. A Neural Network functions by 

mimicking the structure of neurons in the biological brain. It would be worth additional effort to 

produce a comparative work between our proposed method via HMM modeling versus a fraud 

detection approach that applies a Neural Network based model. 
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Appendix 
Appendix A. Expectation Maximization Algorithm 

The Expectation Maximization (EM) algorithm, first outlined in (Dempster, et al., 1977), provides 

a framework for estimating the probabilities of unobserved latent variables, and their influence on 

observed variables. The EM algorithm assesses the probability of an event of a hidden set of events 

𝑺 = (𝑆V, 𝑆5, … , 𝑆­) occurring, provided the observed variables 𝒚 = (𝑦V, 𝑦5, … , 𝑦­). We denote the 

probability of event 𝑺 as, 

 

 𝑃 𝑺 = 𝜃t ( 6.2.1 ) 

 

Where 𝜃t denotes the parameters of the model. We use a shorthand, 𝜃ì|t, to denote 𝑃 𝒚|𝑺 , which 

describes the probability of the sequence of observations provided the hidden state sequence S. 

 

 𝜃ì|t = 𝑃 𝒚|𝑺  ( 6.2.2 ) 

 

The Expectation Maximization (EM) algorithm, allows us to estimate model parameters where 

there exists a hidden intermediate state, S, that behaves as a Markov process. First, we define the 

log likelihood as, 

 

 ℒ = log𝑃 𝒚 𝜃) = log 𝑃(𝑦, 𝑆|𝜃)
º

= log 𝑃 𝑦, 𝑆 	𝜃)
º

 
( 6.2.3 ) 

 

Therefore, using maximum likelihood estimation, we can estimate the parameters that maximize 

this log-likelihood value.  

 

 𝜃sä = 𝑎𝑟𝑔max
í
ℒ ( 6.2.4 ) 
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The EM algorithm proceeds with a random initialization of parameters 𝜃(V). In the Expectation-

Step, we compute the expected value of 𝜃(G) at iteration i, as, 

 

 𝑄 𝜃, 𝜃(GQ5) = 𝐸º|ì,í(\½�)[log 𝑃(𝒚, 𝑺|𝜃(GQ5))] ( 6.2.5 ) 

 

Where the expected value is defined as, 

 

 𝑄 𝜃(G), 𝜃(GQ5) = 𝑃 𝑺 	𝜃(GQ5)) log 𝑃(𝒚, 𝑺|𝜃(G))
º

	 
( 6.2.6 ) 

 

Next, in the maximization step, we maximize 𝜃(G) with respect to the previous parameters, 𝜃(GQ5). 

 

 𝜃(G) = 𝑎𝑟𝑔max
í
𝑄 𝜃, 𝜃(GQ5)  ( 6.2.7 ) 

 

We iterate i through successive iterations, until the algorithm reaches a point of convergence 

where,  

 

 log 𝑃(𝒚, 𝑺|𝜃 Hj5 ) − log 𝑃(𝒚, 𝑺|𝜃 H ) < 𝜖 ( 6.2.8 ) 

 

In this scenario, 𝜖, is so small there is no significant difference between the log likelihood of the 

previous parameters and current parameters. The proof of the convergence of the EM algorithm 

can be found in (Wu, 1983). 

 

Appendix B. Code Repository 

The computer code written to build the feature aggregation and perform the classification 

techniques was written in both the R Programming Language and Python. The link to the source 

code can be found here: https://github.com/larkz/fraudDetection.  
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