
Applications of Reinforcement Learning in Logistics and
Economics

Larkin Liu 1 2

larkin.liu@tum.de

1TUM School of Management

2Munich Data Science Institute

July 17, 2022

1 / 49

Overview

1 Challenges of Supply Chain Management

2 Current Applications of Active Research

3 Research Areas

4 Case Study: Approximate Nash Equilibrium Learning

5 Supplemental Material

6 Markov Games as a Framework for Multi Agent Reinforcement Learning
(Littman 1994) [8]

7 Q Learning (Watkins 1992) [22] and Deep Q Learning (Mnih 2015) [16]

8 Nash Q Learning for General Sum Stochastic Games (Hu & Wellman
2002) [7]

2 / 49

Larkin Liu

Larkin Liu (born 1992) is a Chinese-
Canadian research scientist. He stud-
ied first at the University of Toronto,
obtaining his Master’s degree in In-
dustrial Engineering. Larkin has
worked extensively as a Data Scien-
tist in companies across both Ger-
many and Canada. Currently, he is
a Doctoral Student at the Technical
University of Munich, conducting re-
search at the Chair of Logistics and
Supply Chain.

3 / 49

Challenges of Supply Chain Management

Big Data - Large intakes of data, arising from data availability and
advancements in big data storage (Hadoop, Apache Spark).

Imperfect Information and/or Delays - Due to complex data
tracking and highly stochastic systems.

Multi-Scale Uncertainty - Arising from changes in government
policies, unexpected service disruptions, and supply delays etc.

4 / 49

My Current Areas of Active Research

Risk Management - Stochastic Modelling for inventory optimization
- multi-sourcing, joint replenishment etc.

Competitive Supply Chains - Market Design, Competitive
Strategies, Nash / ϵ-Nash equilibrium multi-agent policies.

Methodology - Fundamental study of mathematical theory in
Stochastic Modelling and Machine Learning.

5 / 49

Risk Management in Inventory Policy

Robust simulation & Data-Driven Modelling - non-parametric
modelling via Machine Learning. [1]

Multi-sourcing policies - Resilience for dealing with global
disruptions in supply chains. [19]

Large Scale MDP’s - solutions via Deep Reinforcement Learning
(Policy Learning, Q-learning etc.) [16] [18].

6 / 49

Multiplayer Supply Chains

Nash and ϵ-Nash Equilibrium Policies - via Multi-Agent
Reinforcement Learning [6]

Algorithmic Game Theory - Efficient Market Design, Optimal
Dynamic Pricing etc.[2] [9]

Markov Games - Competitive & Cooperative Multi-Agent Markov
Decision Processes [5]

7 / 49

Methods

A blend of approximate and exact methods,

Monte Carlo Methods - in Approximate Dynamic Programming,
Monte Carlo Tree Search [12] can be substituted into a main dynamic
programming algorithm to estimate complex value functions. [23]

Mixed Integer Programming and/or Piecewise Convex
Optimization - i.e. Bender’s Decomposition, Dantzig-Wolfe
Decomposition, ADMM [3] [14]

Deep Reinforcement Learning - Modelling complex Q-functions via
Deep Neural Networks to yield approximation of the
T : {St × A× St+1} → {R ∈ R}. (MDP’s, Semi-MDP’s, POMDP’s).

8 / 49

Selected Works

My research papers thus far (includes conferences, journals, and
pre-prints).

Larkin Liu. “Approximate Nash Equilibrium Learning for n-Player
Markov Games in Dynamic Pricing”. In: arXiv preprint
arXiv:2207.06492 (2022)

Larkin Liu, Richard Downe, and Joshua Reid. “Multi-armed bandit
strategies for non-stationary reward distributions and delayed
feedback processes”. In: arXiv preprint arXiv:1902.08593 (2019)

Larkin Liu and Jun Tao Luo. “mctreesearch4j: A Monte Carlo Tree
Search Implementation for the JVM”. In: Journal of Open Source
Software 7.70 (2022), p. 3804

9 / 49

Approximate Nash Equilibrium Learning

Approximate Nash Equilibrium
Learning for n-Player Markov
Games in Dynamic Pricing

10 / 49

Oligopolies

When firms compete to maximize their profit in an oligopoly,

Cournot - Competition on production quantity driven demand.

Stackelberg - Sequential Cournot competition.

Bertrand - Competition on price driven demand.

Bertrand Competition Link

11 / 49

https://policonomics.com/bertrand-duopoly-model

A Simulation of Oligopoly

An Oligopoly Simulation

12 / 49

Solving the ϵ-Nash Equilibrium Conditions

In an ϵ-Nash Equilibrium, no agent can improve its expected policy value
by deviating to a different policy by more than a difference of ϵ.

The solution to ϵ-Nash Equilibrium usually constitute NP-Hard
Problems, and are solved via approximation techniques.

We propose approximation techniques in combination with deep
reinforcement learning.

We demonstrate that approximate Nash Equilibria can be obtained.

ϵ-Nash Equilibrium Conditions

v(πn, π−n∗) ≤ v(πn∗, π−n∗) + ϵ, ∀n ∈ N (1)

13 / 49

Theoretical Market Equilibrium

We propose a hypothetical economic environment, where all agents
generate a market price xn, ϵ is the greatest expected gain when any firm
unilaterally undercuts the current market price xn.

ϵ = max
d∗∈R

(
E[Πn(xn − d∗)]− E[Πn(xn)]

)
(2)

We demonstrate that a theoretical ϵ-Nash Equilibrium, can exist when
(Proof in [10]),

d∗ =

√
c21 − c1 + 4(c2 − 1)c2 − 2c2

2c2

where c1 =
−(β1+β2)

f (x̃) − 1
x̃ , c2 =

−(β1+β2)
f (x̃)x̃

14 / 49

Theoretical Market Equilibrium Scenarios

Market Scenario 1:
β0 = 25, β1 = −0.6, β2 = −6.1, a = 0.1

Market Scenario 2:
β0 = 15, β1 = −1.05, β2 = −3.1, a = 0.1

15 / 49

Multi-Agent Nash Q Learning

In a competitive setting the Q function is altered, and is no longer the
action which maximizes the Bellman Update, but the option that reaches
Nash Equilibrium, N (s ′).

Q ′(s, x̄)←− (1− α)Q(s, x̄) + α[r + γN (s ′)] (3)

x̄∗ = argmax
x̄

Q(s ′, x̄)
N∏
i=1

π∗
n(s

′, xn) (4)

N (s ′) = Q(s ′, x̄∗)
N∏
i=1

π∗
n(s

′, x∗n) (5)

16 / 49

Multi-Agent Nash Q Learning

The maximum value difference, from deviation is represented as δ.

Maximum Value Gain δ

V (s, π) = max
x̄

Q(s, x̄)
N∏
i=1

πn(s, xn) (6)

δ = max
π′
n

(
V (s, π′

n, π−n)− V (s, πn, π−n)

)
∀s ∈ S (7)

δ can be exhausitive to compute so it can be approximated as a Neural
Network Γs . Therefore the approximate NE policy is π̂∗(s).

π̂∗(s) = argmin
π

Γ(π)s (8)

17 / 49

Loss Function

Decreasing training loss.

Convergence of agent rewards to a NE
bound.

18 / 49

Supplemental Material

Supplemental Material

19 / 49

Markov Decision Process

Optimal Policy

Provided a policy π, the expected reward, Vt from taking action at can be
expressed by Eq. 16.

V (St) = max
a∈A

R(St , a) + γ
∑

St+1∈S
P(St+1|St , a)V (St+1)

 (9)

π∗(St) = argmax
a∈A

V (St , a) (10)

A discrete MDP⟨S ,A,T,R⟩ designates a set of states S , where the agent
traverses from St to St+1, for a horizon of T in t distinct time increments.

T : {St × A× St+1} → {R ∈ R} (11)

20 / 49

Markov Decision Process

Q function

Q(St , at) provides a measure of the discounted reward provided action a is
taken in state St

Q(St , at) = R(St , at) + γ
∑

St+1∈S
P(St+1|St , at)V (St+1) (12)

Key Challenges for real-world MDP’s

Parameters of the underlying process MDP⟨S ,A,T,R⟩ are unknown.

Imperfect conditions and/or unobservable information.

High dimensionality of state and action space.

21 / 49

Value Function

The value function of a given policy πn is represented as vγ(πn, π−n),

πn represents the policy of agent n,

π−n represents the policies of the other agents in the system.

A policy πn stipulates the probability that agent n chooses action a ∈ A(s)
in state s ∈ S [5].

Pt
s (π

n, π−n) = [Pt(s ′|s, πn, π−n)]s
′∈S (13)

Reward function, where π(s, x) is the probability that action a is taken in
state s under policy π.

r(s, πn, π−n) =
∑
a∈A

r(s, a)π(s, a) (14)

22 / 49

Markov Decision Process

Optimal Policy

Provided a policy π, the expected reward, Vt from taking action at can be
expressed by Eq. 16.

V (St) = max
a∈A

R(St , a) + γ
∑

St+1∈S
P(St+1|St , a)V (St+1)

 (15)

π∗(St) = argmax
a∈A

V (St , a) (16)

A discrete MDP⟨S ,A,T,R⟩ designates a set of states S , where the agent
traverses from St to St+1, for a horizon of T in t distinct time increments.

T : {St × A× St+1} → {R ∈ R} (17)

23 / 49

Competitive Markov Decision Process

A competitive multi-agent MDP can be fundamentally constituted by
tuples (st , at , rt , st+1),

State snt - State of each agent n at time t, i.e. vendor inventory level
and/or other attributes for the item at time t.

Joint Action a1t , ..., a
N
t - The joint actions at time t for all agents.

Reward r1t , ..., r
N
t - The immediate reward for all respective agents at

time t.

Depending on the visibility of the system, the representation differs,

Fully Observable (s1t , .., s
N
t , a1t , ..., a

N
t , r

1
t , ..., r

N
t , s1t+1, .., s

N
t+1) -

Attributes are fully observable for all agents at time t to all agents.

Censored (snt , a
1
t , ..., a

N
t , r

n
t , ..., r

N
t , snt+1) - Only relevant, or partial

data is observable to each respective agent.

24 / 49

Value Function

The value function of a given policy πn is represented as vγ(πn, π−n),

πn represents the policy of agent n,

π−n represents the policies of the other agents in the system.

A policy πn stipulates the probability that agent n chooses action a ∈ A(s)
in state s ∈ S [5].

Pt
s (π

n, π−n) = [Pt(s ′|s, πn, π−n)]s
′∈S (18)

Reward function, where π(s, x) is the probability that action a is taken in
state s under policy π.

r(s, πn, π−n) =
∑
a∈A

r(s, a)π(s, a) (19)

25 / 49

Value Function (cont.)

The reward vector is a 1 x |S | vector,

r(πn, π−n) = [r(s ′s=1, π
n, π−n), ..., r(s ′s=S , π

n, π−n)]T (20)

Pt(πn, π−n) is a |S | x |S | matrix,

Pt(πn, π−n) = [Pt
s=1(π

n, π−n), ...,Pt
s=S(π

n, π−n)]T (21)

With the definition of r(πn, π−n) and Pt(πn, π−n), we can define the value
function of a policy,

Value Function

v(πn, π−n) =
∞∑
t=0

γtPt(πn, π−n)r(πn, π−n) (22)

26 / 49

Value Function (cont. 2)

Assuming I− γP is invertible, and for some integer value k , such that
Pk = 0 (Nilpotent Matrix Property), we leverage a well known identity,

(I− γP)−1 = (I+ γP2 + γ2P3 + ...+ γk−1Pk−1) (23)

Therefore, v(πn, π−n) can be represented as ,

Value Function [5]

vγ(π
n, π−n) = [I− γP(πn, π−n)]−1r(πn, π−n) (24)

Where I is the identity matrix, and γ is the discount factor.

27 / 49

Structure of the Nash Equilibrium

In an ϵ-Nash Equilibrium, no agent can improve its expected policy value
by deviating to a different policy by more than a difference of ϵ.

ϵ-Nash Equilibrium Conditions

v(πn, π−n∗) ≤ v(πn∗, π−n∗) + ϵ, ∀n ∈ N (25)

Strict Nash Equilibrium when ϵ = 0.

28 / 49

Example - Value Computation

Given a two player Markov Game, with state space S = {0, 1}, and action
space A1 = A2 = {0, 1}. Provided reward function r(a0, a1, s) and
transition probability function p(s ′|a0, a1, s).

r(a0, a1, s) =

[
(3, 0) (6, 0)
(2, 0) (1, 0)

]
(26)

p(s ′|a0, a1, s = 0) =

[
(1, 0) (1/3, 2/3)
(1, 0) (1, 0)

]
(27)

p(s ′|a0, a1, s = 1) =

[
(0, 1) (0, 1)
(0, 1) (0, 1)

]
(28)

29 / 49

Example - Value Computation (cont.)

We provide a fixed policy for agent n = 0, and two candidate policies for
agent n = 1.

πn=0 = [(0, 1), (1, 0)] (29)

πn=1,0 = [(1, 0), (1, 0)] (30)

πn=1,1 = [(0, 1), (1, 0)] (31)

For a discount factor γ = 0.75 compute the value of the joint policy
v(πn=0, πn=1) for infinite time horizon. Comment on the Nash Equilibrium
property.

30 / 49

Example - Value Computation Solution

Compute the state transition matrix for each joint policy.

p(s ′, s, πn=0, πn=1,0) =

[
1/3 2/3
0 1

]
(32)

p(s ′, s, πn=0, πn=1,1) =

[
1 0
0 1

]
(33)

r(s ′, s, πn=0, πn=1,0) =

[
6
0

]
(34)

r(s ′, s, πn=0, πn=1,1) =

[
1
0

]
(35)

The apply Eq. (24) to solve for v(πn=0, πn=1).

31 / 49

Example - Value Computation Solution (Cont.)

We compute the value for each candidate joint policy.

v(πn=0, πn=1,0) =

[
8
0

]
(36)

v(πn=0, πn=1,1) =

[
4
0

]
(37)

The value of the joint policy v(π0, π1), also serves as a strict Nash
Equilibrium point.

v(π0, π1) ≤
[
8
0

]
(38)

32 / 49

Markov Games as a Framework for MARL (Littman 1994)

Markov Games as a Framework for
Multi-Agent Reinforcement

Learning [8]

33 / 49

Game Solution via Linear Programming

Consider a single stage game of rock, paper, scissors (r, p, s), with the
reward matrix r(x0, x1) as given (Littman 1994) [8],

rock paper scissor

vs. rock 0 1 -1

vs. paper -1 0 1

vs. scissor 1 -1 0

Compute the optimal policy for an agent’s perspective.

34 / 49

Max Min Approach to Value Computation

For a single stage game, with no state transitions.

v = max
πn∈P(X)

min
a−n∈X

∑
an∈X

r(x0, x1)π
n (39)

Can be represented by the system of linear inequalities and equations, with
respect the the reward matrix,

πp − πs ≥ v vs. rock (40)

−πr + πs ≥ v vs. paper (41)

πr − πp ≥ v vs. scissor (42)

πr + πp + πs = 1 (43)

Can be solved using Linear Programming.

35 / 49

Q Learning and Deep Q Learning

Q Learning (Watkins 1992) [22]
and Deep Q Learning (Mnih et al

2015) [16]

36 / 49

Reinforcement Learning

From (Sutton et al 2018) [20]

Agent iteratively walks through an undefined MDP, and effective
learning the S → Q(S , a) mapping, to obtain π∗.

Useful when MDP⟨S ,A,T,R⟩ are unknown, too complex, or subject
to imperfect information.

RL has many different variations. We will focus on Q Learning and
Deep Q Learning.

37 / 49

Q Function

The Q function for an agent n is the sum of the immediate reward of
taking action x and the expectation of future value times γ < 1.0.

Q(x , sn) = r(x , sn) + γmax
x ′

(Q(x ′, sn′)) (44)

We define the Q function for multi-agent systems as a vector, where each
element represents an agent.

Q Vector Function

Q(x, s) = r(x, s) + γE[v(s′)] (45)

38 / 49

Q Learning

Q learning iteration

Q i+1(St , at)← (1−α)Q i (St , at)+α
[
R(St , at) + γmax

a
Q i (St+1, a)

]
(46)

The Q function, defined in Eq. 12, is iteratively learned via agent
exploration of the system, where the MDP⟨S ,A,T,R⟩ are unknown.

Proof of optimal policy convergence in (Watkins 1992) [22].

Hyperparameters, learning rate α and reward discount factor γ,
require guess work.

39 / 49

Q Learning (cont.)

From Wikipedia Article
40 / 49

https://en.wikipedia.org/wiki/Q-learning

Deep Q Learning

From (Mismar 2019) [15]

Convolutional Neural Networks can approximate mapping for
S × A→ Q(s, a).

(Mnih et al 2015) [16]* adopted deep Q Learning as a state-of-the-art
solution for designing AI for single and multiplayer computer games.

(Wang et al 2018) [21] (Rabe et al 2017) [17] presents examples of
recent work in OR showing DQL to be highly effectice in solving
MDP’s in Logistics and Supply Chain.

41 / 49

Deep Q Learning (cont.)

From (Mismar 2019) [15]

42 / 49

Nash Q Learning (Hu & Wellman 2002)

Nash Q Learning for General Sum
Stochastic Games (Hu & Wellman

2002) [7]

43 / 49

Nash Q Learning

The update Q value update process is similar to the single agent scenario,
in Eq. (46), however the Q update must now consider the joint action, at,
that is the actions of other competing agents [an, a−n].

Nash Q learning iteration (Hu & Wellman [7])

Q i+1(St , at)← (1− α)Q i (St , at) + α [R(St , at) + γN(St+1, at+1)] (47)

Where, for N agents, the Nash Operator N is defined as,

N(St , a1t , a2t , ..., aNt) = Q(St , a
1
t , a

2
t , ..., a

N
t)

N∏
n=1

πn(St , a
n) (48)

44 / 49

Nash Q Learning (cont.)

At each Q update iteration, the Nash Equilibrium must be solved using the
estimated Q functions for all agents.

vn(s) = max
a∈A

Qn(s, an, a−n) (49)

Where, for N agents, the Nash Operator N is defined as,

N∏
n=1

πn(s, an)Qn(s, ant , a
−n∗
t) ≤

N∏
n=1

πn(s, an)Qn(s, an
∗

t , a−n∗
t) (50)

v(s, πn, π−n∗) ≤ v(s, πn∗ , π−n∗) ∀s ∈ S (51)

45 / 49

References I

[1] Anna-Lena Beutel and Stefan Minner. “Safety stock planning under causal demand forecasting”. In: International Journal of Production
Economics 140.2 (2012), pp. 637–645. url: https://EconPapers.repec.org/RePEc:eee:proeco:v:140:y:2012:i:2:p:637-645.

[2] Martin Bichler, Simon Field, and H. Werthner. “Introduction: Theory and Application of Electronic Market Design”. In: Electronic Commerce
Research 1 (July 2001), pp. 215–220. doi: 10.1023/A:1011512919970.

[3] Stephen Boyd et al. “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”. In: Foundations
and Trends in Machine Learning 3 (Jan. 2011), pp. 1–122. doi: 10.1561/2200000016.

[4] Lihua Chen, Yi Lu, and Rui Zhao. “Analysis and application of modern supply chain system in China”. In: Modern Supply Chain Research
and Applications 1 (June 2019). doi: 10.1108/MSCRA-01-2019-0004.

[5] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

[6] Junling Hu and Michael P. Wellman. “Nash Q-Learning for General-Sum Stochastic Games”. In: J. Mach. Learn. Res. 4.null (Dec. 2003),
pp. 1039–1069. issn: 1532-4435.

[7] Junling Hu and Michael P. Wellman. “Nash Q-Learning for General-Sum Stochastic Games”. In: J. Mach. Learn. Res. 4.null (Dec. 2003),
pp. 1039–1069. issn: 1532-4435.

[8] Michael L. Littman. “Markov Games as a Framework for Multi-Agent Reinforcement Learning”. In: Proceedings of the Eleventh International
Conference on International Conference on Machine Learning. ICML’94. New Brunswick, NJ, USA: Morgan Kaufmann Publishers Inc., 1994,
pp. 157–163. isbn: 1558603352.

[9] Jue Liu, Zhan Pang, and Linggang Qi. “Dynamic pricing and inventory management with demand learning: A bayesian approach”. In:
Computers Operations Research 124 (2020), p. 105078. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.2020.105078. url:
https://www.sciencedirect.com/science/article/pii/S0305054820301957.

[10] Larkin Liu. “Approximate Nash Equilibrium Learning for n-Player Markov Games in Dynamic Pricing”. In: arXiv preprint arXiv:2207.06492
(2022).

[11] Larkin Liu, Richard Downe, and Joshua Reid. “Multi-armed bandit strategies for non-stationary reward distributions and delayed feedback
processes”. In: arXiv preprint arXiv:1902.08593 (2019).

[12] Larkin Liu and Jun Tao Luo. An Extensible and Modular Design and Implementation of Monte Carlo Tree Search for the JVM. 2021. arXiv:
2108.10061 [cs.LG].

[13] Larkin Liu and Jun Tao Luo. “mctreesearch4j: A Monte Carlo Tree Search Implementation for the JVM”. In: Journal of Open Source
Software 7.70 (2022), p. 3804.

46 / 49

https://EconPapers.repec.org/RePEc:eee:proeco:v:140:y:2012:i:2:p:637-645
https://doi.org/10.1023/A:1011512919970
https://doi.org/10.1561/2200000016
https://doi.org/10.1108/MSCRA-01-2019-0004
https://doi.org/https://doi.org/10.1016/j.cor.2020.105078
https://www.sciencedirect.com/science/article/pii/S0305054820301957
https://arxiv.org/abs/2108.10061

References II

[14] Robert Mattila et al. “Computing monotone policies for Markov decision processes: a nearly-isotonic penalty approach **This work was
partially supported by the Swedish Research Council under contract 2016-06079 and the Linnaeus Center ACCESS at KTH.”. In:
IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Congress, pp. 8429–8434. issn: 2405-8963. doi:
https://doi.org/10.1016/j.ifacol.2017.08.1575. url: https://www.sciencedirect.com/science/article/pii/S2405896317321705.

[15] Faris Mismar, Jinseok Choi, and Brian Evans. “A Framework for Automated Cellular Network Tuning With Reinforcement Learning”. In: IEEE
Transactions on Communications 67 (Oct. 2019), pp. 7152–7167. doi: 10.1109/TCOMM.2019.2926715.

[16] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn:
00280836. url: http://dx.doi.org/10.1038/nature14236.

[17] Markus Rabe. “Combining a discrete-event simulation model of a logistics network with deep reinforcement learning.”. In: MIC and MAEB
2017 Conference (2017), pp. 765–774.

[18] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347 [cs.LG].

[19] L. Silbermayr and S. Minner. “Dual Sourcing under Disruption Risk and Cost Improvement through Learning”. In: European Journal of
Operational Research 250.1 (2012), pp. 226–238. doi: 10.1016/j.ejor.2015.09.017.

[20] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018. url:
http://incompleteideas.net/book/the-book-2nd.html.

[21] Michael Wang. “Impacts of supply chain uncertainty and risk on the logistics performance”. In: Asia Pacific Journal of Marketing and
Logistics 30 (Apr. 2018), pp. 00–00. doi: 10.1108/APJML-04-2017-0065.

[22] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning 8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi:
10.1007/BF00992698. url: https://doi.org/10.1007/BF00992698.

[23] David Wozabal, Nils Löhndorf, and Stefan Minner. “Optimizing Trading Decisions for Hydro Storage Systems Using Approximate Dual
Dynamic Programming”. In: Operations Research 61 (July 2013), pp. 810–823. doi: 10.2307/23481798.

47 / 49

https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.1575
https://www.sciencedirect.com/science/article/pii/S2405896317321705
https://doi.org/10.1109/TCOMM.2019.2926715
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.ejor.2015.09.017
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1108/APJML-04-2017-0065
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.2307/23481798

Monte Carlo Tree Search

Performance how can we improve the performance of MCTS?

Application in what ways can we apply performant implementations
of MCTS (ie. [12]) on real world logistical problems?

Outline of MCTS - from Browne:2012.

48 / 49

Background - Supply Chain Complexity

Example of a modern Small-Midsize Enterprise service supply chain. From (Chen et al 2019) [4]

49 / 49

https://www.emerald.com/insight/content/doi/10.1108/MSCRA-01-2019-0004/full/html?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Modern_Supply_Chain_Research_and_Applications_TrendMD_0

	Challenges of Supply Chain Management
	Current Applications of Active Research
	Research Areas
	Case Study: Approximate Nash Equilibrium Learning
	Supplemental Material
	Markov Games as a Framework for Multi Agent Reinforcement Learning (Littman 1994) Littman:1994
	Q Learning (Watkins 1992) Watkins:1992 and Deep Q Learning (Mnih 2015) mnih:2015
	Nash Q Learning for General Sum Stochastic Games (Hu & Wellman 2002) hu-wellman:2002
	References

