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Challenges of Supply Chain Management

Big Data - Large intakes of data, arising from data availability and
advancements in big data storage (Hadoop, Apache Spark).

Imperfect Information and/or Delays - Due to complex data
tracking and highly stochastic systems.

Multi-Scale Uncertainty - Arising from changes in government
policies, unexpected service disruptions, and supply delays etc.
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My Current Areas of Active Research

Risk Management - Stochastic Modelling for inventory optimization
- multi-sourcing, joint replenishment etc.

Competitive Supply Chains - Market Design, Competitive
Strategies, Nash / ϵ-Nash equilibrium multi-agent policies.

Methodology - Fundamental study of mathematical theory in
Stochastic Modelling and Machine Learning.
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Risk Management in Inventory Policy

Robust simulation & Data-Driven Modelling - non-parametric
modelling via Machine Learning. [1]

Multi-sourcing policies - Resilience for dealing with global
disruptions in supply chains. [19]

Large Scale MDP’s - solutions via Deep Reinforcement Learning
(Policy Learning, Q-learning etc.) [16] [18].
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Multiplayer Supply Chains

Nash and ϵ-Nash Equilibrium Policies - via Multi-Agent
Reinforcement Learning [6]

Algorithmic Game Theory - Efficient Market Design, Optimal
Dynamic Pricing etc.[2] [9]

Markov Games - Competitive & Cooperative Multi-Agent Markov
Decision Processes [5]
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Methods

A blend of approximate and exact methods,

Monte Carlo Methods - in Approximate Dynamic Programming,
Monte Carlo Tree Search [12] can be substituted into a main dynamic
programming algorithm to estimate complex value functions. [23]

Mixed Integer Programming and/or Piecewise Convex
Optimization - i.e. Bender’s Decomposition, Dantzig-Wolfe
Decomposition, ADMM [3] [14]

Deep Reinforcement Learning - Modelling complex Q-functions via
Deep Neural Networks to yield approximation of the
T : {St × A× St+1} → {R ∈ R}. (MDP’s, Semi-MDP’s, POMDP’s).
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Selected Works

My research papers thus far (includes conferences, journals, and
pre-prints).

Larkin Liu. “Approximate Nash Equilibrium Learning for n-Player
Markov Games in Dynamic Pricing”. In: arXiv preprint
arXiv:2207.06492 (2022)

Larkin Liu, Richard Downe, and Joshua Reid. “Multi-armed bandit
strategies for non-stationary reward distributions and delayed
feedback processes”. In: arXiv preprint arXiv:1902.08593 (2019)

Larkin Liu and Jun Tao Luo. “mctreesearch4j: A Monte Carlo Tree
Search Implementation for the JVM”. In: Journal of Open Source
Software 7.70 (2022), p. 3804
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Approximate Nash Equilibrium Learning

Approximate Nash Equilibrium
Learning for n-Player Markov
Games in Dynamic Pricing
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Oligopolies

When firms compete to maximize their profit in an oligopoly,

Cournot - Competition on production quantity driven demand.

Stackelberg - Sequential Cournot competition.

Bertrand - Competition on price driven demand.

Bertrand Competition Link
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A Simulation of Oligopoly

An Oligopoly Simulation
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Solving the ϵ-Nash Equilibrium Conditions

In an ϵ-Nash Equilibrium, no agent can improve its expected policy value
by deviating to a different policy by more than a difference of ϵ.

The solution to ϵ-Nash Equilibrium usually constitute NP-Hard
Problems, and are solved via approximation techniques.

We propose approximation techniques in combination with deep
reinforcement learning.

We demonstrate that approximate Nash Equilibria can be obtained.

ϵ-Nash Equilibrium Conditions

v(πn, π−n∗) ≤ v(πn∗, π−n∗) + ϵ, ∀n ∈ N (1)
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Theoretical Market Equilibrium

We propose a hypothetical economic environment, where all agents
generate a market price xn, ϵ is the greatest expected gain when any firm
unilaterally undercuts the current market price xn.

ϵ = max
d∗∈R

(
E[Πn(xn − d∗)]− E[Πn(xn)]

)
(2)

We demonstrate that a theoretical ϵ-Nash Equilibrium, can exist when
(Proof in [10]),

d∗ =

√
c21 − c1 + 4(c2 − 1)c2 − 2c2

2c2

where c1 =
−(β1+β2)

f (x̃) − 1
x̃ , c2 =

−(β1+β2)
f (x̃)x̃
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Theoretical Market Equilibrium Scenarios

Market Scenario 1:
β0 = 25, β1 = −0.6, β2 = −6.1, a = 0.1

Market Scenario 2:
β0 = 15, β1 = −1.05, β2 = −3.1, a = 0.1
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Multi-Agent Nash Q Learning

In a competitive setting the Q function is altered, and is no longer the
action which maximizes the Bellman Update, but the option that reaches
Nash Equilibrium, N (s ′).

Q ′(s, x̄)←− (1− α)Q(s, x̄) + α[r + γN (s ′)] (3)

x̄∗ = argmax
x̄

Q(s ′, x̄)
N∏
i=1

π∗
n(s

′, xn) (4)

N (s ′) = Q(s ′, x̄∗)
N∏
i=1

π∗
n(s

′, x∗n ) (5)
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Multi-Agent Nash Q Learning

The maximum value difference, from deviation is represented as δ.

Maximum Value Gain δ

V (s, π) = max
x̄

Q(s, x̄)
N∏
i=1

πn(s, xn) (6)

δ = max
π′
n

(
V (s, π′

n, π−n)− V (s, πn, π−n)

)
∀s ∈ S (7)

δ can be exhausitive to compute so it can be approximated as a Neural
Network Γs . Therefore the approximate NE policy is π̂∗(s).

π̂∗(s) = argmin
π

Γ(π)s (8)
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Loss Function

Decreasing training loss.

Convergence of agent rewards to a NE
bound.
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Supplemental Material

Supplemental Material
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Markov Decision Process

Optimal Policy

Provided a policy π, the expected reward, Vt from taking action at can be
expressed by Eq. 16.

V (St) = max
a∈A

R(St , a) + γ
∑

St+1∈S
P(St+1|St , a)V (St+1)

 (9)

π∗(St) = argmax
a∈A

V (St , a) (10)

A discrete MDP⟨S ,A,T,R⟩ designates a set of states S , where the agent
traverses from St to St+1, for a horizon of T in t distinct time increments.

T : {St × A× St+1} → {R ∈ R} (11)
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Markov Decision Process

Q function

Q(St , at) provides a measure of the discounted reward provided action a is
taken in state St

Q(St , at) = R(St , at) + γ
∑

St+1∈S
P(St+1|St , at)V (St+1) (12)

Key Challenges for real-world MDP’s

Parameters of the underlying process MDP⟨S ,A,T,R⟩ are unknown.

Imperfect conditions and/or unobservable information.

High dimensionality of state and action space.
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Value Function

The value function of a given policy πn is represented as vγ(πn, π−n),

πn represents the policy of agent n,

π−n represents the policies of the other agents in the system.

A policy πn stipulates the probability that agent n chooses action a ∈ A(s)
in state s ∈ S [5].

Pt
s (π

n, π−n) = [Pt(s ′|s, πn, π−n)]s
′∈S (13)

Reward function, where π(s, x) is the probability that action a is taken in
state s under policy π.

r(s, πn, π−n) =
∑
a∈A

r(s, a)π(s, a) (14)
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Markov Decision Process

Optimal Policy

Provided a policy π, the expected reward, Vt from taking action at can be
expressed by Eq. 16.

V (St) = max
a∈A

R(St , a) + γ
∑

St+1∈S
P(St+1|St , a)V (St+1)

 (15)

π∗(St) = argmax
a∈A

V (St , a) (16)

A discrete MDP⟨S ,A,T,R⟩ designates a set of states S , where the agent
traverses from St to St+1, for a horizon of T in t distinct time increments.

T : {St × A× St+1} → {R ∈ R} (17)
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Competitive Markov Decision Process

A competitive multi-agent MDP can be fundamentally constituted by
tuples (st , at , rt , st+1),

State snt - State of each agent n at time t, i.e. vendor inventory level
and/or other attributes for the item at time t.

Joint Action a1t , ..., a
N
t - The joint actions at time t for all agents.

Reward r1t , ..., r
N
t - The immediate reward for all respective agents at

time t.

Depending on the visibility of the system, the representation differs,

Fully Observable (s1t , .., s
N
t , a1t , ..., a

N
t , r

1
t , ..., r

N
t , s1t+1, .., s

N
t+1) -

Attributes are fully observable for all agents at time t to all agents.

Censored (snt , a
1
t , ..., a

N
t , r

n
t , ..., r

N
t , snt+1) - Only relevant, or partial

data is observable to each respective agent.
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Value Function

The value function of a given policy πn is represented as vγ(πn, π−n),

πn represents the policy of agent n,

π−n represents the policies of the other agents in the system.

A policy πn stipulates the probability that agent n chooses action a ∈ A(s)
in state s ∈ S [5].

Pt
s (π

n, π−n) = [Pt(s ′|s, πn, π−n)]s
′∈S (18)

Reward function, where π(s, x) is the probability that action a is taken in
state s under policy π.

r(s, πn, π−n) =
∑
a∈A

r(s, a)π(s, a) (19)
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Value Function (cont.)

The reward vector is a 1 x |S | vector,

r(πn, π−n) = [r(s ′s=1, π
n, π−n), ..., r(s ′s=S , π

n, π−n)]T (20)

Pt(πn, π−n) is a |S | x |S | matrix,

Pt(πn, π−n) = [Pt
s=1(π

n, π−n), ...,Pt
s=S(π

n, π−n)]T (21)

With the definition of r(πn, π−n) and Pt(πn, π−n), we can define the value
function of a policy,

Value Function

v(πn, π−n) =
∞∑
t=0

γtPt(πn, π−n)r(πn, π−n) (22)
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Value Function (cont. 2)

Assuming I− γP is invertible, and for some integer value k , such that
Pk = 0 (Nilpotent Matrix Property), we leverage a well known identity,

(I− γP)−1 = (I+ γP2 + γ2P3 + ...+ γk−1Pk−1) (23)

Therefore, v(πn, π−n) can be represented as ,

Value Function [5]

vγ(π
n, π−n) = [I− γP(πn, π−n)]−1r(πn, π−n) (24)

Where I is the identity matrix, and γ is the discount factor.
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Structure of the Nash Equilibrium

In an ϵ-Nash Equilibrium, no agent can improve its expected policy value
by deviating to a different policy by more than a difference of ϵ.

ϵ-Nash Equilibrium Conditions

v(πn, π−n∗) ≤ v(πn∗, π−n∗) + ϵ, ∀n ∈ N (25)

Strict Nash Equilibrium when ϵ = 0.
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Example - Value Computation

Given a two player Markov Game, with state space S = {0, 1}, and action
space A1 = A2 = {0, 1}. Provided reward function r(a0, a1, s) and
transition probability function p(s ′|a0, a1, s).

r(a0, a1, s) =

[
(3, 0) (6, 0)
(2, 0) (1, 0)

]
(26)

p(s ′|a0, a1, s = 0) =

[
(1, 0) (1/3, 2/3)
(1, 0) (1, 0)

]
(27)

p(s ′|a0, a1, s = 1) =

[
(0, 1) (0, 1)
(0, 1) (0, 1)

]
(28)
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Example - Value Computation (cont.)

We provide a fixed policy for agent n = 0, and two candidate policies for
agent n = 1.

πn=0 = [(0, 1), (1, 0)] (29)

πn=1,0 = [(1, 0), (1, 0)] (30)

πn=1,1 = [(0, 1), (1, 0)] (31)

For a discount factor γ = 0.75 compute the value of the joint policy
v(πn=0, πn=1) for infinite time horizon. Comment on the Nash Equilibrium
property.
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Example - Value Computation Solution

Compute the state transition matrix for each joint policy.

p(s ′, s, πn=0, πn=1,0) =

[
1/3 2/3
0 1

]
(32)

p(s ′, s, πn=0, πn=1,1) =

[
1 0
0 1

]
(33)

r(s ′, s, πn=0, πn=1,0) =

[
6
0

]
(34)

r(s ′, s, πn=0, πn=1,1) =

[
1
0

]
(35)

The apply Eq. (24) to solve for v(πn=0, πn=1).
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Example - Value Computation Solution (Cont.)

We compute the value for each candidate joint policy.

v(πn=0, πn=1,0) =

[
8
0

]
(36)

v(πn=0, πn=1,1) =

[
4
0

]
(37)

The value of the joint policy v(π0, π1), also serves as a strict Nash
Equilibrium point.

v(π0, π1) ≤
[
8
0

]
(38)
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Markov Games as a Framework for MARL (Littman 1994)

Markov Games as a Framework for
Multi-Agent Reinforcement

Learning [8]
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Game Solution via Linear Programming

Consider a single stage game of rock, paper, scissors (r, p, s), with the
reward matrix r(x0, x1) as given (Littman 1994) [8],

rock paper scissor

vs. rock 0 1 -1

vs. paper -1 0 1

vs. scissor 1 -1 0

Compute the optimal policy for an agent’s perspective.
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Max Min Approach to Value Computation

For a single stage game, with no state transitions.

v = max
πn∈P(X )

min
a−n∈X

∑
an∈X

r(x0, x1)π
n (39)

Can be represented by the system of linear inequalities and equations, with
respect the the reward matrix,

πp − πs ≥ v vs. rock (40)

−πr + πs ≥ v vs. paper (41)

πr − πp ≥ v vs. scissor (42)

πr + πp + πs = 1 (43)

Can be solved using Linear Programming.
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Q Learning and Deep Q Learning

Q Learning (Watkins 1992) [22]
and Deep Q Learning (Mnih et al

2015) [16]
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Reinforcement Learning

From (Sutton et al 2018) [20]

Agent iteratively walks through an undefined MDP, and effective
learning the S → Q(S , a) mapping, to obtain π∗.

Useful when MDP⟨S ,A,T,R⟩ are unknown, too complex, or subject
to imperfect information.

RL has many different variations. We will focus on Q Learning and
Deep Q Learning.
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Q Function

The Q function for an agent n is the sum of the immediate reward of
taking action x and the expectation of future value times γ < 1.0.

Q(x , sn) = r(x , sn) + γmax
x ′

(Q(x ′, sn′)) (44)

We define the Q function for multi-agent systems as a vector, where each
element represents an agent.

Q Vector Function

Q(x, s) = r(x, s) + γE[v(s′)] (45)
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Q Learning

Q learning iteration

Q i+1(St , at)← (1−α)Q i (St , at)+α
[
R(St , at) + γmax

a
Q i (St+1, a)

]
(46)

The Q function, defined in Eq. 12, is iteratively learned via agent
exploration of the system, where the MDP⟨S ,A,T,R⟩ are unknown.

Proof of optimal policy convergence in (Watkins 1992) [22].

Hyperparameters, learning rate α and reward discount factor γ,
require guess work.
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Q Learning (cont.)

From Wikipedia Article
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Deep Q Learning

From (Mismar 2019) [15]

Convolutional Neural Networks can approximate mapping for
S × A→ Q(s, a).

(Mnih et al 2015) [16]* adopted deep Q Learning as a state-of-the-art
solution for designing AI for single and multiplayer computer games.

(Wang et al 2018) [21] (Rabe et al 2017) [17] presents examples of
recent work in OR showing DQL to be highly effectice in solving
MDP’s in Logistics and Supply Chain.
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Deep Q Learning (cont.)

From (Mismar 2019) [15]
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Nash Q Learning (Hu & Wellman 2002)

Nash Q Learning for General Sum
Stochastic Games (Hu & Wellman

2002) [7]
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Nash Q Learning

The update Q value update process is similar to the single agent scenario,
in Eq. (46), however the Q update must now consider the joint action, at,
that is the actions of other competing agents [an, a−n].

Nash Q learning iteration (Hu & Wellman [7])

Q i+1(St , at)← (1− α)Q i (St , at) + α [R(St , at) + γN(St+1, at+1)] (47)

Where, for N agents, the Nash Operator N is defined as,

N(St , a1t , a2t , ..., aNt ) = Q(St , a
1
t , a

2
t , ..., a

N
t )

N∏
n=1

πn(St , a
n) (48)
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Nash Q Learning (cont.)

At each Q update iteration, the Nash Equilibrium must be solved using the
estimated Q functions for all agents.

vn(s) = max
a∈A

Qn(s, an, a−n) (49)

Where, for N agents, the Nash Operator N is defined as,

N∏
n=1

πn(s, an)Qn(s, ant , a
−n∗
t ) ≤

N∏
n=1

πn(s, an)Qn(s, an
∗

t , a−n∗
t ) (50)

v(s, πn, π−n∗) ≤ v(s, πn∗ , π−n∗) ∀s ∈ S (51)
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Monte Carlo Tree Search

Performance how can we improve the performance of MCTS?

Application in what ways can we apply performant implementations
of MCTS (ie. [12]) on real world logistical problems?

Outline of MCTS - from Browne:2012.
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Background - Supply Chain Complexity

Example of a modern Small-Midsize Enterprise service supply chain. From (Chen et al 2019) [4]
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